0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用COMSOL模拟量子力学中的隧穿现象

GIPk_COMSOL_Chi 来源:lq 2019-02-04 16:58 次阅读

在经典力学中,当粒子携带的能量不足以克服势垒时,粒子是无法穿过势垒的。但是在量子力学中,电荷等微观粒子却能够穿越大于其自身携带总能量的势垒层,这就是量子隧穿效应。我们可以使用 COMSOL® 软件的“半导体模块”中提供的 WKB 隧穿模型来以及异质结和肖特基等边界条件,描述量子隧穿的相关现象。在下文中,我们将通过基准模型演示其用法。

Wentzel-Kramers-Brillouin 近似

根据 K.Yang、J.R.East 和 G.I. Haddad 的参考文献(Ref. 1),若采用 Wentzel-Kramers-Brillouin(WKB)近似假设,隧穿电流会向热离子电流增加一个分数因子

(1)

其中

内积分

WKB 隧穿模型

为了使用 WKB 近似模拟隧穿效应,首先需要设置边界条件,此步骤涉及添加隧穿产生的额外电流密度。针对异质结,选择热电子发射;针对金属接触,选择理想肖特基。选定上述(非默认)选项之后,新建的额外电流贡献 栏将立即显示在界面中,我们即可为电子和空穴分别指定额外电流贡献。默认情况下,不需要添加额外电流。我们还可以在内置的 WKB 隧穿模型和用户定义选项间进行选择。请参考下方示例截图。

选择热电子发射以添加额外电流贡献。

如上文所述,对于与势垒相关的变量,电子和空穴的计算方式不同,所以我们为每种类型的载流子引入了不同的特征,它们在“模型开发器”中被添加到异质结或肖特基接触边界条件的子节点。请参考下方示例截图。

“模型开发器”的树结构和 WKB 隧穿模型,电子 特征的设置窗口。

在上图的设置 窗口中,边界选择 通常指定添加了额外电流密度的边界。域选择则指定势垒所在的相邻域。第二个边界选择指定了与第一个边界选择相对的域的边界。隧穿基本发生在选定域内,即第一个和第二个边界选择之间。

在二维和三维模型中,除了有效质量之外,我们还需要输入一个描述电场线方向的坐标变量,并输入一个(二维)或两个(三维)跨过隧穿边界的坐标变量。在简单的矩形几何中,内置空间变量x,y和z(或基于它们的表达式)可用于定义坐标变量。在更通用的几何中,则可以使用曲线坐标 数学接口。“案例下载”中的“异质结隧穿”教学模型演示了后一种方法。

渐变异质结模型

异质结隧穿模型比较了在不同温度下,发生与不发生隧穿效应的渐变异质结的电流密度模拟值。为了便于比较仿真结果,设备构型和所有材料属性均来源于参考文献(特别是 3.3 节)。

这是一个分子束外延生长的 AlxGa1-xAs 渐变异质结,它形成了可阻挡电子的三角形势垒。为了获得与实验数据的最佳拟合,文献作者在运行每个仿真时使用了一组未必与实验标称值相同的材料及设备参数。为了方便比较仿真结果,我们采用了作者选定的一组模拟参数,理由与文献提出的论点一致。

我们通过在空间上改变 AlxGa1-xAs 层中铝的摩尔分数来形成三角形势垒层。在 COMSOL Multiphysics® 软件中,我们能够基于摩尔分数等局部变量,以及参考温度、晶格温度和掺杂浓度等参数和变量,直接创建材料并定义材料属性。摩尔分数则通过空间变化变量来定义。使变量在空间中变化有两种方法:使用显式表达式,或者在不同域内使用不同定义。我们在模型中利用了这两种方法。如下方截图所示,我们在定义下创建了多个变量节点,在不同域内应用不同的掺杂变量和摩尔分数。此外,我们利用内置的空间坐标变量 x 使摩尔分数在“域 2”内具有空间依赖性。

通过在 定义下添加多个节点(每个域对应一个节点),对不同的域应用不同的掺杂与摩尔分数变量。内置变量 x 使变量Al_frac具有空间依赖性。

上文所定义的空间依赖性变量可以用在材料与物理场的定义中,如下图所示。

我们将掺杂变量N_D直接输入到掺杂特征中,如下方截图所示。

在掺杂浓度的定义中使用空间因变量N_D。

我们利用摩尔分数变量Al_frac在材料定义中定义了一个便捷符号 x,此符号位于基本子节点的设置窗口的局部属性栏中,并被用于定义态密度(DOS)有效质量、相对介电常数、带隙、电子亲和性和迁移率。请注意,利用前缀 def,我们可以访问定义在基本 子节点中、带def标签的符号。例如,在下方截图中,输入框中的表达式def.x可用于访问有效质量me和mh。

通过符号def.x使用材料定义中的空间因变量Al_frac。

当访问物理场设置中的材料属性时,可以利用前缀material。以下方的截图为例,它利用表达式material.def.x来查找符号x。前文截图显示另一个示例,它利用表达式material.def.me访问电子有效质量。

使用前缀material访问物理场设置中的材料属性。

建立曲线坐标

如前文所述,(在通用几何的内置变量x、y和 z的简单表达式不可行的情况下)我们可以利用曲线坐标 接口沿电场线与隧穿边界建立坐标。此模型几何是一个简单的矩形(见 Ref. 1 中的图 2b),电场线和隧穿边界坐标简单地表示为 x 和 y。不过为了进行演示,我们仍然在此模型中使用曲线坐标 接口。如下方截图所示,我们在“模型开发器”中创建了两个包含扩散方法 选项的曲线坐标 接口,一个用于电场线,另一个用于隧穿边界。

入口边界的设置窗口。

将入口和出口边界置于在势垒域的另一侧,这样可以使解沿期望坐标发生变化。两个曲线坐标接口的解如下图所示。

两个曲线坐标 接口的解。垂直等值线是电场线的坐标,水平等值线是隧穿边界的坐标。

在此示例中,域 2 恰好覆盖了感兴趣区域,顺势对势垒进行线积分。通常情况下,我们可以使用几何内的不同边界来定义感兴趣区域,这些边界可能与材料边界重合,也可能不重合。

对于任意几何,曲线坐标 接口的解也许与电场线坐标不完全重合。不过,它为我们提供了良好的近似,并省去了通过数值方式搜索场线的麻烦。

上图中的解可用于定义 WKB 隧穿特征的坐标变量。下方截图显示了变量定义,前文截图显示了 WKB 特征的设置。

设置窗口显示隧穿变量的定义。

模拟隧穿效应的其他物理场设置

由于隧穿效应对势垒的形状高度敏感,所以我们改用有限元准费米能级公式。考虑到因变量在每个网格单元内均为常数,所以缺省的有限体积公式需要更加精细的网格。

我们在模型树中建立两个异质结边界条件,借此计算与比较包含与不包含隧穿效应的结果。

求解渐变异质结模型

该模型分阶段进行求解。“研究 1”计算了无隧穿效应的情况。因为曲线坐标在整个模型中不变,所以“研究 2”仅进行一次求解。

“研究 3”求解了包含隧穿效应的情况,而且只包含半导体物理场。为了提供良好的初始条件,我们使求解变量的初始值 指向“研究 1”的解。由于隧穿特征所需的曲线坐标 接口未包含在研究步骤中,所以我们使不求解的变量值 指向“研究 2”中的解,从而对曲线坐标进行定义。下方截图显示了相关设置。

研究设置。注意求解变量的初始值和不求解的变量值使用了不同的研究。

另外两项研究采用了相似的求解变量的初始值 和不求解的变量值 设置,主要计算低温下的情况。对于非线性方程系统,我们需要为辅助扫描建立一个良好的初始条件。我们发现,在温度较低的情况下,如果对 I-V 曲线从低电压扫描到高电压,收敛会更加容易。

比较仿真结果与参考文献

下图比较了温度为 300 K 时,有无隧穿效应分别对应的电流密度与电压(J-V)曲线。结果与 Ref. 1 中的图 12 很好地吻合。

比较有和没有隧穿效应情况下的 J-V 曲线。

为了解释势垒宽度对隧穿电流大小的影响,文献图 13 比较了两个偏置电压下的导带结构示意图和电子准费米能级。我们的模型准确地还原了相关数据,如下所示。

两个偏置电压下的导带图说明了势垒宽度对隧穿效应产生的影响。

最后,下图表明不同温度下的 J-V 模拟曲线与文献的图 14 基本一致。

不同温度下的 J-V 曲线。

结语

在本篇博客文章中,我们利用渐变异质结基准模型演示了 WKB 特征,并介绍了如何创建用户定义的三元材料属性。我们讨论了在研究设置中定义求解变量的初始值 和不求解的变量值 的基本技巧,这些技巧可应用于很多建模情景。我们希望您会将这些功能与技巧应用到仿真工作中。

如希望亲手尝试“异质结隧穿”模型,请单击下方按钮跳转至“案例下载”页面。登录 COMSOL Access 帐户后,您可以下载此示例的文档,如果您拥有有效的软件许可证,还可以下载 MPH 文件。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体模块
    +关注

    关注

    0

    文章

    6

    浏览量

    7790
  • 量子力学
    +关注

    关注

    8

    文章

    101

    浏览量

    20115
  • COMSOL
    +关注

    关注

    34

    文章

    93

    浏览量

    55752

原文标题:使用 COMSOL 模拟量子力学中的隧穿现象

文章出处:【微信号:COMSOL-China,微信公众号:COMSOL】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    量子力学原理下载

    量子力学原理下载:量子力学原理 量子力学原理狄拉克:态的迭加原理,力学变量与可观察量,表像理论,量子条件,运动方程,初等应用,微扰理论,碰担
    发表于 11-27 14:22

    量子力学在介观电路的应用

    量子力学在介观电路的应用近年来,随着计算机技术和纳米电子学的飞速发展,电子器件电路及器件的小型化和高集成度趋势越来越显著,近年来已达到了原子尺度的量级。当电路的尺寸小到和电子的相干长度可以比拟
    发表于 08-20 18:12

    世界先进的用以量子力学研究的基础设施

    ` 世界先进的用以量子力学研究的基础设施量子力学开创了量子计算和通讯使人们的日常生活得以改善,发生了翻天地覆的变化,蒸蒸日上!示意了用于量子力学科学探索和研究的设想的基础设施。一. 爱
    发表于 07-16 08:56

    进一步理解量子力学经典 多方面丰富相关图表

    进一步理解量子力学经典理论与应用 多方面丰富相关图表为了进一步深入理解量子力学理论经典及其应用,从多个方面丰富内容,附图页码一致,符合国际标准。声学,声波自然现象,以及经典原子理论的应用等对理解
    发表于 08-02 07:05

    量子力学经典量子力学的原子理论应用之空间量化

    量子力学经典量子力学的原子理论应用之空间量化 经典量子力学理论又一则,量子力学的原子理论应用之空间量化(内容附图页码一致,图文并茂,形象生动,符合国际标准)5.
    发表于 08-04 09:40

    量子力学经典之固态物理应用

    本帖最后由 ygpotsyyz 于 2020-8-6 21:30 编辑 量子力学经典之固态物理应用量子力学传统经典为现代乃至当今量子计算与通讯之基础,理论与实践相结合又一经典,固态物理应用。图文内容符合国际标准:大湾区2
    发表于 08-06 21:03

    量子力学精品课程

    量子力学精品课程内容:量子力学的诞生,波函数和 Schrodinger 方程,一维定态问题,量子力学力学量,态和
    发表于 11-25 09:45 6次下载
    <b class='flag-5'>量子力学</b>精品课程

    量子力学PDF

    量子力学PDF教程:第一章  绪论 经典物理学的失效   第二章  波函数与波动方程   第三章  一维定态问题   第四章  量子力学
    发表于 11-25 13:49 128次下载

    量子力学和物质波

    量子力学是20世纪最成功的理论之一,物质波是量子力学从建立到完成过程起决定性作用的概念之一。本文从量子力学的建立和发展过程出发,对量子力学
    发表于 11-27 13:07 19次下载

    dirac量子力学原理

    dirac量子力学原理:态的迭加原理,力学变量与可观察量,表像理论,量子条件,运动方程,初等应用,微扰理论,碰担问题,辐射理论,电子的相对论性理论,量子
    发表于 11-27 14:24 0次下载
    dirac<b class='flag-5'>量子力学</b>原理

    什么是量子力学?什么叫量子力学?

    什么是量子力学 究竟是什么机制使空腔的原子产生出所观察到的黑体辐射能量分布,对此问题的研究导致了量子物理学的诞生。   
    发表于 11-25 09:50 2.8w次阅读

    基于定位与量子力学的设计应用

    定位与量子力学:定位是基于心理学,这是定位的本质定性。而量子力量在心理学上就有很多的意念、直觉等意识形态上的交叉。直觉告诉我:定位与量子力学存在某种关联,即:心理学上的一些现象与意识形
    发表于 09-19 10:28 11次下载

    量子穿实验揭示粒子可打破光速

    新浪科技讯 北京时间11约13日消息,最近的实验表明,当粒子通过量子力学的隧道穿过势垒时,它们的速度应该能够比光速更快。 就在量子力学的基本方程刚被发现之时,物理学家就发现了该理论允许的最奇怪的现象
    的头像 发表于 11-13 10:22 2410次阅读

    量子穿会超光速吗?

    量子穿是一种很奇妙的现象,让粒子可以穿过一堵本来应该挡住它们的墙。这听起来有点像魔术,但其实它是由量子力学的规律所决定的。那么
    的头像 发表于 05-30 15:31 632次阅读

    量子力学的定义是什么 量子力学三大基本原理

    量子力学是一种物理学理论,它描述了微观尺度下粒子行为和相互作用的规律。它基于量子的概念,认为微观粒子(如电子、光子等)的性质以及它们在空间和时间中的行为,受到量子力学的规律控制。
    的头像 发表于 09-12 14:55 1w次阅读