0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何用TensorFlow进行机器学习研究

Tensorflowers 来源:cg 2019-02-05 10:06 次阅读

在此之前,我们介绍过用于自动微分的 TensorFlow API - 自动微分,优化机器学习模型的关键技术,这是机器学习的基本构建块。在今天的教程中,我们将使用先前教程中介绍的 TensorFlow 基础来进行一些简单的机器学习。

TensorFlow 还包括一个更高级别的神经网络 API(tf.keras),它提供了有用的抽象来减少样板。我们强烈建议那些使用神经网络的人使用更高级别的 API。但是,在这个简短的教程中我们将从神经网络训练的基本原理来建立一个坚实的基础。

设置

import tensorflow as tftf.enable_eager_execution()

变量

TensorFlow 中的张量是不可变的无状态对象。然而,机器学习模型需要具有可变的状态:随着模型的训练,计算预测的相同代码应该随着时间的推移而表现不同(希望具有较低的损失!)。要表示在计算过程中需要改变的状态,事实上您可以选择依赖 Python 这种有状态的编程语言:

# Using python statex = tf.zeros([10, 10])x += 2 # This is equivalent to x = x + 2, which does not mutate the original # value of xprint(x)

tf.Tensor([[2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.] [2。2. 2. 2. 2. 2. 2. 2. 2. 2.]],shape =(10,10),dtype = float32)

但是,TensorFlow 内置了有状态操作,这些操作通常比您所用的低级 Python 表示更易于使用。例如,为了表示模型中的权重,使用 TensorFlow 变量通常是方便有效的。

变量是一个存储值的对象,当在 TensorFlow 计算中使用时,它将隐式地从该存储值中读取。有些操作(如:tf.assign_sub,tf.scatter_update 等)会操纵存储在 TensorFlow 变量中的值。

v = tf.Variable(1.0)assert v.numpy() == 1.0# Re-assign the valuev.assign(3.0)assert v.numpy() == 3.0# Use `v` in a TensorFlow operation like tf.square() and reassignv.assign(tf.square(v))assert v.numpy() == 9.0

使用变量的计算在计算梯度时自动跟踪。对于表示嵌入式的变量,TensorFlow 默认会进行稀疏更新,这样可以提高计算效率和内存效率。

使用变量也是一种快速让代码的读者知道这段状态是可变的方法。

示例:拟合线性模型

现在让我们把目前掌握的几个概念 — 张量、梯度带、变量 — 应用到构建和训练一个简单模型中去。这通常涉及几个步骤:

1.定义模型。

2.定义损失函数。

3.获取训练数据。

4.运行训练数据并使用 “优化器” 调整变量以匹配数据。

在本教程中,我们将介绍一个简单线性模型的简单示例:f(x) = x * W + b,它有两个变量 —W 和 b。此外,我们将综合数据,以便训练好的模型具有 W = 3.0 和 b = 2.0。

定义模型

让我们定义一个简单的类来封装变量和计算。

class Model(object): def __init__(self): # Initialize variable to (5.0, 0.0) # In practice, these should be initialized to random values. self.W = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.W * x + self.b model = Model()assert model(3.0).numpy() == 15.0

定义损失函数

损失函数测量给定输入的模型输出与期望输出的匹配程度。让我们使用标准的 L2 损失。

def loss(predicted_y, desired_y): return tf.reduce_mean(tf.square(predicted_y - desired_y))

获取训练数据

让我们用一些噪音(noise)合成训练数据。

TRUE_W = 3.0TRUE_b = 2.0NUM_EXAMPLES = 1000inputs = tf.random_normal(shape=[NUM_EXAMPLES])noise = tf.random_normal(shape=[NUM_EXAMPLES])outputs = inputs * TRUE_W + TRUE_b + noise

在我们训练模型之前,让我们想象一下模型现在的位置。我们将用红色绘制模型的预测,用蓝色绘制训练数据。

import matplotlib.pyplot as pltplt.scatter(inputs, outputs, c='b')plt.scatter(inputs, model(inputs), c='r')plt.show()print('Current loss: '),print(loss(model(inputs), outputs).numpy())

Current loss:

7.92897

定义训练循环

我们现在有了网络和培训数据。我们来训练一下,使用训练数据更新模型的变量 ( W 和 b),以便使用梯度下降减少损失。在 tf.train.Optimizer 实现中有许多梯度下降方案的变体。我们强烈建议使用这种实现,但本着从基本原理出发的精神,在这个特定的例子中,我们将自己实现基本的数学。

def train(model, inputs, outputs, learning_rate): with tf.GradientTape() as t: current_loss = loss(model(inputs), outputs) dW, db = t.gradient(current_loss, [model.W, model.b]) model.W.assign_sub(learning_rate * dW) model.b.assign_sub(learning_rate * db)

最后,让我们反复运行训练数据,看看 W 和 b 是如何发展的。

model = Model()# Collect the history of W-values and b-values to plot laterWs, bs = [], []epochs = range(10)for epoch in epochs: Ws.append(model.W.numpy()) bs.append(model.b.numpy()) current_loss = loss(model(inputs), outputs) train(model, inputs, outputs, learning_rate=0.1) print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' % (epoch, Ws[-1], bs[-1], current_loss))# Let's plot it allplt.plot(epochs, Ws, 'r', epochs, bs, 'b')plt.plot([TRUE_W] * len(epochs), 'r--', [TRUE_b] * len(epochs), 'b--')plt.legend(['W', 'b', 'true W', 'true_b'])plt.show()

Epoch 0: W=5.00 b=0.00, loss=7.92897Epoch 1: W=4.64 b=0.35, loss=5.61977Epoch 2: W=4.35 b=0.64, loss=4.07488Epoch 3: W=4.11 b=0.88, loss=3.04133Epoch 4: W=3.91 b=1.07, loss=2.34987Epoch 5: W=3.75 b=1.23, loss=1.88727Epoch 6: W=3.62 b=1.36, loss=1.57779Epoch 7: W=3.51 b=1.47, loss=1.37073Epoch 8: W=3.42 b=1.55, loss=1.23221Epoch 9: W=3.35 b=1.62, loss=1.13954

下一步

在本教程中,我们介绍了变量 Variables,使用了到目前为止讨论的 TensorFlow 基本原理构建并训练了一个简单的线性模型。

从理论上讲,这几乎是您使用 TensorFlow 进行机器学习研究所需要的全部内容。在实践中,特别是对于神经网络,更高级别的 APItf.keras 会更方便,因为它提供更高级别的构建块(称为 “层”),保存和恢复状态的实用程序,一套损失函数,一套优化策略等等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132765
  • tensorflow
    +关注

    关注

    13

    文章

    329

    浏览量

    60540

原文标题:带你使用 TensorFlow 进行机器学习研究

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
    的头像 发表于 01-08 09:25 1015次阅读
    如何使用<b class='flag-5'>TensorFlow</b>构建<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型

    关于 TensorFlow

    世界上最好的机器学习工具库之一的东东,我们希望能够创造一个开放的标准,来促进交流研究想法和将机器学习算法产品化。Google的工程师们确实在
    发表于 03-30 19:57

    谷歌深度学习插件tensorflow

    前段时间忙着研究Zedboard,这几天穿插着加入Python的深度学习研究,最近使用谷歌的tensorflow比较多,而且官方出了中文教程,比较给力,下面在Windows10下安装
    发表于 07-04 13:46

    干货!教你怎么搭建TensorFlow深度学习开发环境!

    `TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算
    发表于 09-27 13:56

    tensorflow机器学习日志

    tensorflow学习日志(四)机器学习(泛化,过拟合, 数据集,验证集,测试集)
    发表于 04-14 06:32

    TensorFlow的特点和基本的操作方式

    Tensorflow是Google开源的深度学习框架,来自于Google Brain研究项目,在Google第一代分布式机器学习框架Dist
    发表于 11-23 09:56

    labview+yolov4+tensorflow+openvion深度学习

    缺陷检测主要知识点:1Tensorflow-GPU环境的搭建Tensorflow object环境搭建学会如何标注图片如何labview快速通过迁移学习训练自己的模型如何利用labview生成优化后的OPENVINO模型IR如何
    发表于 05-10 22:33

    何用BMlang搭建Tensorflow模型?

    在EVM1684上如何用BMlang搭建一个Tensorflow模型,求助官方一个demo。
    发表于 09-18 07:00

    TensorFlow的框架结构解析

    TensorFlow是谷歌的第二代开源的人工智能学习系统,是用来实现神经网络的内置框架学习软件库。目前,TensorFlow机器
    发表于 04-04 14:39 7116次阅读
    <b class='flag-5'>TensorFlow</b>的框架结构解析

    深度学习的发展与应用,TensorFlow研究到实践

    TensorFlow 的目标是成为人人可用的机器学习平台,能够帮助机器学习研究者、开发者,去表
    的头像 发表于 06-05 11:00 4630次阅读

    Swift for TensorFlow:无边界机器学习,值得大家期待

    据资料显示,Swift for TensorFlow:无边界机器学习简介主要是——Swift for TensorFlow 是为下一代机器
    的头像 发表于 09-20 14:20 2934次阅读

    推荐初学者的TensorFlow延伸阅读

    推荐初学者的延伸阅读 除了课程内容外,TensorFlow 官网也为大家提供了学习研究机器学习丰富实用的资源,例如老师在课程中提到的
    的头像 发表于 11-04 18:31 1888次阅读

    使用TensorFlow建立深度学习机器学习网络

    教你使用TensorFlow建立深度学习机器学习网络。
    发表于 03-26 09:44 18次下载

    如何使用TensorFlow进行大规模和分布式的QML模拟

    发布人:Google 团队 Cheng Xing 和 Michael Broughton 训练大型机器学习模型是 TensorFlow 的核心能力。多年来,训练规模已成为 NLP、图像识别和药物研发
    的头像 发表于 08-10 17:31 2642次阅读

    轻松入门,高效成长: "TensorFlow 机器学习技能解锁季"

    体系,体验 TensorFlow 的最佳实践模式? 《 TensorFlow 入门实操课程》 带你零基础快速上手 想高效实践机器学习模型部署,借助
    的头像 发表于 11-10 11:35 796次阅读