0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能深度学习算法在工业机械臂上的应用

曼哈顿计划 来源:cc 2019-01-16 10:55 次阅读

从功能上来说,你这个应用非常适合采用深度学习,事实上,深度学习本质上就是用来做分类识别的,尤其是针对零件与零件之间,图像上差异比较小的时候(比如你需要自动分拣A,B,C三种零件,但其形状差别很小),更加适合用深度学习。

不过深度学习也存在它的问题:

训练的样本要足够大,具体多大合适,要看你对图像区分度的要求。如果样本不是很充分的情况下,比如数千张或更少,其实也可以考虑用传统方式,比如SVM。我用传统方式做过宝马车标,安全帽等的识别,准确度相当高了,尤其是车标识别,接近100%准确,而我只用了不到100张做训练,而且无论算法还是模型库都不大,很适合做嵌入式,而且可以做到实时。

对深度学习而言,速度/性能是个很大的问题,不知道题主的机器性能如何,以及对应的图片分辨率,是否要实时处理?我估计题主应该是那种实时高清识别,而且有可能是嵌入式设备,我们姑且认为视频是直接从本机采集,不需要做解码,即便如此,基于深度学习的运算量也是很高的,尤其是resnet这种,一般而言,层数越多越精准,运算量也会越高。高清情况下(机器视觉应用一般会1080P或更高),我个人认为单张图片的识别时间会超过1秒,很难做实时。有朋友在256核的TX1上测试过标清的FAST RCNN,单张处理时间为0.6秒左右,我本人测试过googlenet,在一台阿里云E5的机器上(无GPU),识别一张720p的图片,估计约0.3 - 0.5秒左右(我的应用需要考虑网络传输的时间,没打log,只是通过返回结果大致估计)。无论哪种情况,离每秒25帧的实时要求都差得太远。

结论:

嵌入式设备,个人不建议用深度学习,除非你能将密集运算部分移植到FPGA上,否则性能会是个很大的问题。

高清和实时的应用,一般而言也不建议用深度学习,理由同上。

对于区分度要求很高(种类很多,很相近),非实时的应用,基于后端或云端的业务,有足够的运算资源。特别适合用深度学习。

能解决问题才是王道,传统方式未必不可以。

强烈建议题主关注一下,深度学习领域芯片相关技术的进展,比如谷歌的TPU,国内的寒武纪,以及轻量级框架mxnet等。

举一个具体的实例:

深度学习应用于工业机械臂的控制,这也是 Industry 4.0 的发展方向。

将深度学习算法应用到工业机器人上,拿来做商品或者零件分拣,大概可以分为「分类」和「捡起」两步:

(1) 对商品或者零件进行「分类」

这个步骤非常适合使用深度学习,因为深度学习本质上就是用来做分类识别的。

(2) 将商品或者零件「成功捡起」

对于单个商品或者零件,要想将其成功捡起,关键是选择合适的把持位置,通俗的将,就是机器人夹零件的哪个地方,可以使零件不下滑,从而成功地被捡起来。比较典型的算法,一个是採用两阶段的深度学习算法,第一阶段通过小型的Neural Network,检测出数个可以把持的位置,第二阶段採用大型的Neural Network,对第一阶段得到的各个把持位置候选进行评估,选择最终的一个把持位置。这种算法的成功率大概能达到65%。

(上图显示了第一个阶段得到多个候选把持位置,第二阶段得到最终把持位置)

另一个是结合了深度学习和Heterogeneous Learning,将把持位置的信息(width, height, x, y, θ)以及把持该位置时成功捡起零件的成功率“Graspability”用来训练模型,模型如下:

下图表示的是把持位置的信息(width, height, x, y, θ)的定义,以及各把持位置对应的Graspability Label。

下图是Positive和Negetive教师信号的例子。

下图是得到的最终把持位置,可以达到85%左右的成功率。

对于多个商品和零件堆积在一起的情形,除了把持位置的选择,还需要选择合适的抓取顺序,即先抓取哪一个零件,后抓取哪一个零件,这时可以採用Reinforcement Learning算法,最终可以达到约90%的成功率,和熟练工人的水平相当。当然,要将这些成果大规模应用到工业流水线上,还需要考虑到正确率要求更高(一般是99.9%),以及速度要求更快等,目前许多改进就是围绕满足这两点指标来进行的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47234

    浏览量

    238351
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121126

原文标题:人工智能深度学习的算法可以应用到工业的机械臂上吗?

文章出处:【微信号:gh_599f8b397756,微信公众号:曼哈顿计划】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神
    发表于 11-14 16:39

    NPU深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为
    的头像 发表于 11-14 15:17 531次阅读

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中
    发表于 10-24 17:22 2482次阅读
    <b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。阅读这一章后,我深刻感受到了人工智能技术科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的
    发表于 10-14 09:12

    risc-v人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理器结合了
    发表于 09-28 11:00

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度
    发表于 07-29 17:05

    深度学习算法嵌入式平台上的部署

    随着人工智能技术的飞速发展,深度学习算法各个领域的应用日益广泛。然而,将深度
    的头像 发表于 07-15 10:03 1349次阅读

    人工智能大模型工业网络安全领域的应用

    随着人工智能技术的飞速发展,人工智能大模型作为一种具有强大数据处理能力和复杂模式识别能力的深度学习模型,已经多个领域展现了其独特的优势和广
    的头像 发表于 07-10 14:07 743次阅读

    人工智能、机器学习深度学习是什么

    科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度
    的头像 发表于 07-03 18:22 1278次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习各个领域展现出了强大的潜力和广泛的应用价值。深度
    的头像 发表于 07-03 18:20 4176次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 308次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例 28分55秒 https://t.elecfans.com/v/27184.html
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    工业、农业、医疗、城市建设、金融、航天军工等多个领域。新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17