0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

定义顶盖驱动空腔用于多种CFD模型的技巧

GIPk_COMSOL_Chi 作者:电子发烧友网 2019-01-19 09:28 次阅读

顶盖驱动空腔是计算流体力学(CFD)领域用于验证计算方法的常用问题之一。虽然涉及的边界条件相对简单,但是流动特性却相当复杂有趣。在本文中,我们将展示如何在 COMSOL Multiphysics® 软件中定义这一基准问题,并演示映射网格划分和非线性递增等适用于多种 CFD 模型的技巧。

在 COMSOL Multiphysics® 中模拟顶盖驱动空腔

顶盖驱动空腔包含一个充满液体的方形空腔。在顶部边界处,切向速度被用来驱动空腔内的流体流动。剩余的三个壁被定义为无滑移边界条件,即速度为零。

为了确定基准模型,我们选择求解那些采用不同方法都能轻松解决的通用性问题。那么,该如何使用描述问题的最通用公式来比较不同的计算方法呢?一种方法是将方程式无量纲化,这意味着问题将不依赖于具体的材料、长度尺度或工作条件。对于顶盖驱动空腔内流体流动,我们可以求解无量纲纳维-斯托克斯方程。

在不包含体积力的情况下,不可压缩的稳态纳维-斯托克斯方程的形式为:

将速度()、压力()和长度尺度()无量纲化后,可将方程修改为下列形式:

雷诺数的定义是。此无量纲参数描述了流体的惯性力相对于粘性力的比重大小。

通过比较这两种方程形式,我们可以确定在求解无量纲化方程之前需要在COMSOL Multiphysics 模型中输入哪些参数。具体来讲,既然惯性项前面的系数为 1,因此我们在材料特性中设密度为 1。粘性项的系数是,因此将它作为粘度输入。

应用非线性递增

随着雷诺数增大,与惯性项相比,粘性项在方程中的比重越来越低。由于粘性项在方程中是线性的,而惯性项是非线性的,因此雷诺数的增大使得问题越来越接近非线性。当求解非线性问题时,我们通常选择利用非线性递增方法为求解器提供良好的初始条件。下列文章详细讨论了非线性递增。

黏度递增方法提高 CFD 模型的收敛性

通过递增非线性改进非线性问题的收敛

在此模型中,我们在研究中对多个雷诺数进行辅助扫描。这样做有两个目的:

将不同雷诺数的解与文献结果进行比较

演示如何通过采用非线性递增方法来帮助求解

为了方便收敛,此例中的问题不需要非线性递增。不过如果处理高度非线性的问题,非线性递增是改进收敛性的一个重要技巧。

设置边界条件和约束

至于边界条件,顶壁朝 x 方向以 U = 1 的速度移动。其他三个壁被施加了无滑移条件(U = 0)。

顶盖驱动空腔模型的边界条件。

尽管以上边界条件充分描述了待求解的物理问题,我们还需要对密闭的空腔施加另外一个必要条件:压力点约束。处于稳态的密闭系统中不存在具有明确压力水平的入口或出口。缺少了参考压力,纳维-斯托克斯方程对于稳态问题有无数个解,因为它们只能求解随压力梯度而变化的问题。因此,压力点约束规定了流体的绝对压力水平。当施加 p = 0 的压力点约束时,这相当于 1 atm 的绝对压力,介绍如何指定流体压力的文章就这一点给出了解释。

只要求解密闭空腔内的稳态流,不管是搅拌釜式反应器还是自然对流问题,一定要在流体内远离流场关心区域施加压力点约束。使用压力点约束的示例模型有水杯中的自然对流和模块化搅拌器教程

通过映射网格划分将域离散化

既然定义好了边界条件,接下来思考如何将求解域离散化。顶盖驱动空腔问题是演示如何借助映射网格高效且有效地对四边形几何进行离散化的完美示例。映射网格使用矩形单元进行域离散化。我们无需均匀分割这些单元。事实上,我们可以利用网格序列中的映射 节点下的分布 子节点沿边界定义单元之间的距离。在顶盖驱动腔体中,我们希望在流动梯度更高的地方,也就是无滑移壁附近堆叠更多单元,这样就可以在所有边上施加对称分布特征。

顶盖驱动空腔模型的映射网格。

此例中,我们对正方形划分了映射网格,事实上该技术可应用于任何四边几何结构。我们甚至可以将不规则的几何结构分割成多个四边实体,从而更方便地划分映射网格。一些情况下,映射网格比自由三角形网格的计算效率更高,而且更容易控制单元间距。与映射网格相关的案例,请参考平板上方的非等温湍流和管式反应器中的分解反应教程。

CFD 仿真结果与文献数据对比

现在我们一起查看结果。首先是采用彩虹色表绘制的空腔内的速度大小,以及利用向量图指示的流动方向。可以看到,空腔顶部的速度接近于 U = 1,此处的流体流动是由移动壁驱动的。流体被推向右侧的壁后,先向下流动,再回到腔体左侧。运动在空腔中心产生了一个大型涡流。图片显示,当雷诺数较低,例如等于 100 时(左图),由于粘性项较大而造成的能量损耗,空腔中心的速度较小。雷诺数增加到 10000 后(右图),空腔内的速度加快,涡流明显扩展到了空腔底部。

当雷诺数等于 100(左图)和 1000(右图)时,空腔内的流体速度和流动方向。

顶盖驱动腔是一个基准问题,因此我们需要参考现有文献(Ref. 1)进行比较。首先查看空腔中心线上的速度。下方左图沿垂直中心线绘制了速度(u)的 x 轴分量,右图为沿水平中心线的速度(v)的 y 轴分量。在这个雷诺数范围内,仿真结果与文献极为一致。

比较仿真结果与文献中,不同雷诺数下速度的 x 轴分量(左图)和 y 轴分量(右图)。

下方的速度绘图表明大型涡流形成于空腔的中心,但是空腔角落的流动情况又如何呢?我们利用流线绘制了空腔内各个区域的流动结构。由于仿真没有入口,我们将流线定位 设为均匀密度(而不是在所选边界上)。

将流线定位设置为均匀密度的设置窗口。

我们可以看到,对于较低的雷诺数,流体在左下角和右下角附近分离,并形成了两个涡流。随着雷诺数增大,流体的惯性增强,导致流动更早地与壁分离,并产生了更大的角速度。雷诺数进一步增大后,左上角形成了第三个涡流。对于最大的雷诺数(10000),除了左上角的涡流外,底部两个角落又产生了两个涡流。

不同雷诺数对应的空腔流动。

顶盖驱动空腔问题的结语

我们在本文中展示了如何定义经典的 CFD 问题——顶盖驱动空腔问题。辅助扫描改进了仿真的收敛性,使我们能够求解多个雷诺数。我们还演示了如何借助映射网格划分高效地对四边形几何离散化,并更好地对壁附近的流体的高梯度进行解析。此外,通过比较仿真结果与现有文献,我们确定了二者基本相同。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驱动
    +关注

    关注

    12

    文章

    1818

    浏览量

    85104
  • CFD
    CFD
    +关注

    关注

    1

    文章

    104

    浏览量

    18356

原文标题:使用 COMSOL 软件求解经典 CFD 基准问题:顶盖驱动空腔

文章出处:【微信号:COMSOL-China,微信公众号:COMSOL】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    将TI TSC应用于各种和多种功能

    电子发烧友网站提供《将TI TSC应用于各种和多种功能.pdf》资料免费下载
    发表于 10-22 10:15 0次下载
    将TI TSC应<b class='flag-5'>用于</b>各种和<b class='flag-5'>多种</b>功能

    NVIDIA NeMo加速并简化自定义模型开发

    如果企业希望充分发挥出 AI 的力量,就需要根据其行业需求量身定制的自定义模型
    的头像 发表于 07-26 11:17 654次阅读
    NVIDIA NeMo加速并简化自<b class='flag-5'>定义</b><b class='flag-5'>模型</b>开发

    半导体真空腔体:精密工艺铸就科技基石

    ,真空腔体作为关键设备之一,其加工制造技术直接关系到半导体器件的质量和生产效率。本文将深入探讨半导体行业真空腔体的加工制造过程、技术挑战、材料选择以及未来发展趋势。
    的头像 发表于 07-24 11:09 1249次阅读
    半导体真<b class='flag-5'>空腔</b>体:精密工艺铸就科技基石

    NVIDIA AI Foundry 为全球企业打造自定义 Llama 3.1 生成式 AI 模型

    Foundry 提供从数据策管、合成数据生成、微调、检索、防护到评估的全方位生成式 AI 模型服务,以便部署自定义 Llama 3.1 NVIDIA NIM 微服务和新的 NVIDIA NeMo
    发表于 07-24 09:39 670次阅读
    NVIDIA AI Foundry 为全球企业打造自<b class='flag-5'>定义</b> Llama 3.1 生成式 AI <b class='flag-5'>模型</b>

    llm模型有哪些格式

    LLM(Large Language Model,大型语言模型)是一种深度学习模型,主要用于处理自然语言处理(NLP)任务。LLM模型的格式多种
    的头像 发表于 07-09 09:59 508次阅读

    LLM模型和LMM模型的区别

    LLM(线性混合模型)和LMM(线性混合效应模型)之间的区别如下: 定义: LLM(线性混合模型)是一种统计模型
    的头像 发表于 07-09 09:57 662次阅读

    包含具有多种类型信息的3D模型

    Desktop是一个3D建模CAD程序,用于多种绘图和设计,涵盖建筑、土木和机械工程,以及室内设计、产品设计、景观建筑甚至游戏开发。它通常用于创建和编辑3D模型,同时提供与BIM工作
    发表于 03-28 17:18

    全新Ansys Fluent Web用户界面支持访问大规模多GPU CFD仿真

    基于Web的技术将释放云计算的强大功能,加速CFD仿真,从而减少对硬件资源的依赖
    的头像 发表于 02-25 09:59 595次阅读

    变压器顶盖着火故障诊断分析

    故障现象:炎炎七月的一个傍晚,这台变压器顶盖高压套管处燃着大火,并散发出浓烈的油脂味。断电扑灭大火后,爬上变压器顶部观察,发现一幅惨不忍睹的景象:L3相高压电缆已经炸裂,接线柱上端螺纹损坏;铝接线
    的头像 发表于 01-25 10:26 515次阅读

    基于YOLOv8实现自定义姿态评估模型训练

    Hello大家好,今天给大家分享一下如何基于YOLOv8姿态评估模型,实现在自定义数据集上,完成自定义姿态评估模型的训练与推理。
    的头像 发表于 12-25 11:29 2731次阅读
    基于YOLOv8实现自<b class='flag-5'>定义</b>姿态评估<b class='flag-5'>模型</b>训练

    什么是大模型的badcase?如何修复大模型的badcase呢?

    首先我们定义什么是大模型的badcase,大模型badcase是指在应用场景中,出现不符合预期的答复。但实际上不符合预期的答复可能多种多样,原因也各不相同,有没有什么统一的思路能处理这
    的头像 发表于 12-14 16:40 1904次阅读

    直播就在明天!基于大涡模拟的 CFD 仿真软件—Fidelity CharLES

    Cadence 的多物理场 CFD 仿真工具 CharLES 是一款高精度、高并行效率的瞬态流体仿真软件。它能求解湍流流动、气动噪声、反应流、多相流等复杂物理问题,并提供丰富的后处理结果用于分析
    的头像 发表于 12-13 12:25 682次阅读
    直播就在明天!基于大涡模拟的 <b class='flag-5'>CFD</b> 仿真软件—Fidelity CharLES

    140 GHz空腔滤波器设计及加工工艺研究

    摘 要:设计并实现了一种采用进口电火花技术加工的D波段电感膜片耦合的矩形波导空腔滤波器。采用等效电路法设计了一个140 GHz矩形空腔带通滤波器。采用有限元仿真软件HFSS分析了腔体个数对滤波器
    的头像 发表于 12-11 13:36 1030次阅读
    140 GHz<b class='flag-5'>空腔</b>滤波器设计及加工工艺研究

    机器人模型其他关节的定义

    base_link的定义 base_link是所有的其他关节的基础,也就是基坐标系所在的link。 这里他的几何图形我们直接引用他的dae文件,至于如何用Solidworks绘制模型然后制作成dae
    的头像 发表于 11-28 14:27 395次阅读

    如何在 CFD 设计中利用网格维护几何形状并减少运行时间?

    如何在 CFD 设计中利用网格维护几何形状并减少运行时间?
    的头像 发表于 11-24 17:07 464次阅读
    如何在 <b class='flag-5'>CFD</b> 设计中利用网格维护几何形状并减少运行时间?