0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何用Python进行无监督学习

人工智能和机器人研究院 来源:cc 2019-01-21 17:23 次阅读

无监督学习是一种用于在数据中查找模式的机器学习技术。无监督算法给出的数据不带标记,只给出输入变量(X),没有相应的输出变量。在无监督学习中,算法自己去发现数据中有趣的结构。

人工智能研究总监严乐群解释说,非监督学习教学机器能够自主学习,而不需要被明确告知它们所做的一切是对是错,这是实现真正人工智能的关键。

监督与无监督学习

在监督学习中,系统试图从前面给出的例子中学习。(另一方面,在无监督学习中,系统试图直接从给出的例子中找到模式。)如果数据集被标记,它就会遇到监督问题,如果数据集没有标记,那么它就是一个监督问题。

SRC

左边的图像是监督学习的一个例子;我们使用回归技术来寻找特征之间的最佳匹配线。而在无监督学习中,输入是基于特征分离的,预测是基于它所属的集群。

重要术语

特性:用于预测的输入变量。

预测:当提供一个输入示例时,模型s的输出。

示例:数据集的一行。示例包含一个或多个特性,可能还有一个标签

标签:特性的结果。

为无监督学习准备数据

在本文中,我们使用Iris数据集进行第一次预测。该数据集包含一组150条记录,包含5个属性:花瓣长度、花瓣宽度、萼片长度、萼片宽度和类别。蝴蝶花,蝴蝶花和花色蝴蝶花是三个等级。对于我们的无监督算法,我们给出虹膜花的这四个特征,并预测它属于哪一类。

我们使用Python中的sklearn库加载Iris数据集,使用matplotlib实现数据可视化。下面是用于研究数据集的代码片段。

# Importing Modules from sklearn import datasets import matplotlib.pyplot as plt # Loading dataset iris_df = datasets.load_iris() # Available methods on dataset print(dir(iris_df)) # Features print(iris_df.feature_names) # Targets print(iris_df.target) # Target Names print(iris_df.target_names) label = {0: 'red', 1: 'blue', 2: 'green'} # Dataset Slicing x_axis = iris_df.data[:, 0] # Sepal Length y_axis = iris_df.data[:, 2] # Sepal Width # Plotting plt.scatter(x_axis, y_axis, c=iris_df.target) plt.show()

['DESCR','data','feature_names','target','target_names'] ['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(厘米)']

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

['setosa''versicolor''virginica']

紫罗兰:濑户草,绿色:杂色,黄色:弗吉尼亚

在上面的图像中,左边的图像是未分类的原始数据,右边的图像是聚类的(根据数据的特征进行分类)。当给定一个要预测的输入时,它会根据它的特性检查它所属的集群,然后进行预测。

Python中的K-Means聚类

K均值是一种迭代聚类算法,其目标是在每次迭代中寻找局部最大值。选择初始所需的集群数量。因为我们知道有3个类,所以我们编写算法将数据分组到3个类中,方法是将参数n个集群传递到KMeans模型中。现在随机将三个点(输入)分配到三个集群中。根据每个点之间的质心距离,下一个给定的输入被分离成受尊重的集群。现在,重新计算所有集群的质心。

集群的每个质心是定义结果组的特征值的集合。质心特征权值的检验可以定性地解释每个聚类所代表的组的类型。

从sklearn库中导入KMeans模型,进行特征拟合和预测。

K是Python中的实现。

# Importing Modules from sklearn import datasets from sklearn.cluster import KMeans # Loading dataset iris_df = datasets.load_iris() # Declaring Model model = KMeans(n_clusters=3) # Fitting Model model.fit(iris_df.data) # Predicitng a single input predicted_label = model.predict([[7.2, 3.5, 0.8, 1.6]]) # Prediction on the entire data all_predictions = model.predict(iris_df.data) # Printing Predictions print(predicted_label) print(all_predictions)

[0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 2 1 1 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2]

分层聚类

分层聚类,顾名思义,是一种构建集群层次结构的算法。该算法首先将所有数据分配给自己的集群。然后将两个最近的集群连接到同一个集群中。最后,当只剩下一个集群时,该算法就结束了。

利用树状图可以显示层次聚类的完成情况。现在让我们看一个谷物数据分层聚类的例子。数据集可以在这里找到。

Python中的分层集群实现。

# Importing Modules from scipy.cluster.hierarchy import linkage, dendrogram import matplotlib.pyplot as plt import pandas as pd # Reading the DataFrame seeds_df = pd.read_csv( "https://raw.githubusercontent.com/vihar/unsupervised-learning-with-python/master/seeds-less-rows.csv") # Remove the grain species from the DataFrame, save for later varieties = list(seeds_df.pop('grain_variety')) # Extract the measurements as a NumPy array samples = seeds_df.values """ Perform hierarchical clustering on samples using the linkage() function with the method='complete' keyword argument. Assign the result to mergings. """ mergings = linkage(samples, method='complete') """ Plot a dendrogram using the dendrogram() function on mergings, specifying the keyword arguments labels=varieties, leaf_rotation=90, and leaf_font_size=6. """ dendrogram(mergings, labels=varieties, leaf_rotation=90, leaf_font_size=6, ) plt.show()

K均值和分层聚类之间的差异

层次聚类不能很好地处理大数据,K表示聚类可以。这是因为K均值的时间复杂度是线性的,即O(n),而层次聚类的时间复杂度是二次的,即O(n2)。

在K均值聚类中,当我们从任意选择的聚类开始时,多次运行该算法生成的结果可能会有所不同。而结果在层次聚类中是可重复的。

当星系团的形状是超球形(如二维的圆形,三维的球形)时,发现K 代表工作良好。

K-Means不允许有噪声的数据,而在分层中我们可以直接使用有噪声的数据集进行聚类。

t-SNE聚类

它是一种无监督的可视化学习方法。t-SNE代表t分布随机邻居嵌入。它将高维空间映射到可以可视化的二维或三维空间。具体地说,它通过一个二维或三维点对每个高维物体进行建模,其方法是用附近的点对相似的物体建模,用高概率的远点对不同的物体建模。

Python中Iris数据集的t-SNE聚类实现。

# Importing Modules from sklearn import datasets from sklearn.manifold import TSNE import matplotlib.pyplot as plt # Loading dataset iris_df = datasets.load_iris() # Defining Model model = TSNE(learning_rate=100) # Fitting Model transformed = model.fit_transform(iris_df.data) # Plotting 2d t-Sne x_axis = transformed[:, 0] y_axis = transformed[:, 1] plt.scatter(x_axis, y_axis, c=iris_df.target) plt.show()

紫色:Setosa,绿色:Versicolor,黄色:Virginica

这里,由于Iris数据集具有四个特征(4d),将其转换成二维图表示。类似地,t-SNE模型可以应用于具有n个特征的数据集。

DBSCAN群集

DBSCAN(基于密度的噪声应用空间聚类)是一种常用的聚类算法,用于替代预测分析中的k均值。它不需要您输入集群的数量才能运行。但作为交换,您必须调优其他两个参数。

scikit-learn实现为eps和min示例参数提供了默认值,但是通常需要对它们进行调优。eps参数是在同一个邻域内需要考虑的两个数据点之间的最大距离。最小样本参数是一个邻域内被认为是一个集群的数据点的最小数量。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132407
  • python
    +关注

    关注

    56

    文章

    4782

    浏览量

    84453

原文标题:使用Python进行无监督学习

文章出处:【微信号:gh_ecbcc3b6eabf,微信公众号:人工智能和机器人研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用Python进行串口通信的案例

    当然!以下是一个使用Python进行串口通信的简单示例。这个示例展示了如何配置串口、发送数据以及接收数据。我们将使用 pyserial 库,这是一个非常流行的用于串口通信的Python库。 首先,你
    的头像 发表于 11-22 09:11 63次阅读

    时空引导下的时间序列自监督学习框架

    【导读】最近,香港科技大学、上海AI Lab等多个组织联合发布了一篇时间序列监督预训练的文章,相比原来的TS2Vec等时间序列表示学习工作,核心在于提出了将空间信息融入到预训练阶段,即在预训练阶段
    的头像 发表于 11-15 11:41 127次阅读
    时空引导下的时间序列自<b class='flag-5'>监督学习</b>框架

    使用Python进行Ping测试

    )请求包,然后等待目标主机返回响应包,从而测量网络的延迟和丢包情况。随着Python编程语言的广泛应用,越来越多的网络工程师开始使用Python进行自动化网络测试和管理任务。本篇文章将详细介绍如何使用
    的头像 发表于 08-12 17:56 441次阅读
    使用<b class='flag-5'>Python</b><b class='flag-5'>进行</b>Ping测试

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    收集海量的文本数据作为训练材料。这些数据集不仅包括语法结构的学习,还包括对语言的深层次理解,如文化背景、语境含义和情感色彩等。 自监督学习:模型采用自监督学习策略,在大量标签文本数据
    发表于 08-02 11:03

    【《大语言模型应用指南》阅读体验】+ 基础篇

    章节最后总结了机器学习的分类:有监督学习监督学习、半监督学习、自监督学习和强化
    发表于 07-25 14:33

    神经网络如何用监督算法训练

    标记数据的处理尤为有效,能够充分利用互联网上的海量数据资源。以下将详细探讨神经网络如何用监督算法进行训练,包括常见的
    的头像 发表于 07-09 18:06 699次阅读

    深度学习中的监督学习方法综述

    应用中往往难以实现。因此,监督学习在深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的监督学
    的头像 发表于 07-09 10:50 512次阅读

    深度学习常用的Python

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习研究和应用的首选工具。本文将深入探讨
    的头像 发表于 07-03 16:04 568次阅读

    如何使用Python进行神经网络编程

    神经网络简介 神经网络是一种受人脑启发的机器学习模型,由大量的节点(或称为“神经元”)组成,这些节点在网络中相互连接。每个节点可以接收输入,对输入进行加权求和,然后通过一个激活函数产生输出
    的头像 发表于 07-02 09:58 365次阅读

    基于FPGA的类脑计算平台 —PYNQ 集群的监督图像识别类脑计算系统

    STDP 监督学习算法,可运用于图像的 监督分类。 从平台设计角度: (1)本设计搭建的基于 PYNQ 集群的通用低功耗的大规模类脑计算平台,搭载 PYNN,NEST 等
    发表于 06-25 18:35

    Meta发布新型监督视频预测模型“V-JEPA”

    Meta,这家社交媒体和科技巨头,近日宣布推出一种新型的监督视频预测模型,名为“V-JEPA”。这一模型在视频处理领域引起了广泛关注,因为它通过抽象性预测生成视频中缺失或模糊的部分来进行学习
    的头像 发表于 02-19 11:19 944次阅读

    2024年AI领域将会有哪些新突破呢?

    传统的机器学习需要大量的标记数据进行训练,但自监督学习可以通过监督的方式从大规模未标记的数据中学习
    的头像 发表于 01-24 09:58 1951次阅读

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自
    的头像 发表于 01-12 16:06 537次阅读

    基于transformer和自监督学习的路面异常检测方法分享

    铺设异常检测可以帮助减少数据存储、传输、标记和处理的压力。本论文描述了一种基于Transformer和自监督学习的新方法,有助于定位异常区域。
    的头像 发表于 12-06 14:57 1466次阅读
    基于transformer和自<b class='flag-5'>监督学习</b>的路面异常检测方法分享

    监督域自适应场景:基于检索增强的情境学习实现知识迁移

    本文对比了多种基线方法,包括监督域自适应的传统方法(如Pseudo-labeling和对抗训练)、基于检索的LM方法(如REALM和RAG)和情境学习方法(如In-context learning)。
    发表于 12-05 14:14 564次阅读
    <b class='flag-5'>无</b><b class='flag-5'>监督</b>域自适应场景:基于检索增强的情境<b class='flag-5'>学习</b>实现知识迁移