0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深入研读了25年来的AI研究论文,结果表明深度学习的时代即将结束

mK5P_AItists 来源:lq 2019-01-28 15:43 次阅读

我们分析了16625篇论文,以洞察AI下一步的发展方向

我们深入研读了25年来的AI研究论文,结果表明深度学习的时代即将结束。

如今你听到的关于AI的几乎所有内容都归功于深度学习。这类算法工作原理是使用统计方法来查找数据中的模式;事实证明,深度学习在模仿人类技能(比如我们的视觉和听觉能力)方面功能异常强大,它甚至可以模仿我们推理的能力。这些功能在幕后支持谷歌的搜索、Facebook的新闻源和Netflix的推荐引擎,并正在彻底改变医疗保健和教育等行业。

不过虽然深度学习凭一己之力将AI推入了公众视野,但它只是全人类竭力复制自身智慧的历史长河中的一小朵浪花。它在不到10年的时间里处于这方面的最前沿。如果你综观这个领域的整个历史,很容易意识到深度学习可能很快行将消失。

华盛顿大学的计算机科学教授、《终极算法》一书的作者Pedro Domingos说:“要是有人在2011年撰文称,深度学习很快消失的言论几年后会出现在报刊杂志的头版,我们可能会这么说‘哇,你是不是吃错药了。’”

他表示,长期以来,不同技术的突然兴衰起落已成为AI研究领域的特征。每隔十年,不同想法之间就会出现一番激烈的竞争。之后,偶尔会出现大反转,这个圈子中的每个人就某一种特定的想法达成共识。

《麻省理工学院科技评论》杂志(MIT Technology Review)想要直观地呈现这些变化。于是,我们将目光投向最庞大的科学论文开源数据库之一:arXiv。我们下载了2018年11月18日之前归属“AI”部分的所有16625篇论文的摘要,跟踪分析了这些年来提及的单词,看看这个领域是如何演变的。

从arXiv下载的论文数量

我们通过一番分析,发现了三个主要的趋势:20世纪90年代末和21世纪初向机器学习转变,2010年初开始神经网络日渐普及,以及近几年强化学习大行其道。

有几个地方需要注意。首先,arXiv的AI部分只追溯到1993年,而“AI”这个术语可以追溯到20世纪50年代,所以这个数据库只代表该领域发展史的几个最新章节。其次,每年添加到数据库中的论文只代表当时该领域所做工作的一小部分。不过,arXiv还是提供了出色的资源,便于汇集一些较大的研究趋势,并了解不同想法的角力。

一种机器学习范式

我们发现的最大转变是21世纪初期离基于知识的系统渐行渐远。这种计算机程序基于这个想法:你可以使用规则来编码所有的人类知识。研究人员求助于机器学习,这个大类的算法包括深度学习。

在提及的前100个单词中,与基于知识的系统相关的那些单词(比如“逻辑”、“约束”和“规则”)跌势最猛。而与机器学习有关的那些单词(比如“数据”、“网络”和“性能”)增势最猛。

机器学习让基于知识的推理相形见绌

每1000个单词的单词频率

这种巨大变化的原因相当简单。在80年代,由于试图在机器中重现常识的雄心勃勃的项目激动人心,基于知识的系统积累了一大批拥趸。但随着那些项目逐渐展开来,研究人员遇到了一大问题:如果一个系统要做任何有用的事情,需要编写的规则实在太多了。这增加了成本,并严重阻碍了后期的日常工作。

机器学习成为了解决这个问题的答案。这种方法不是要求人们手动编码成千上万条规则,而是对机器编程,以便从一堆数据中自动提取那些规则。正因为如此,这个领域摈弃了基于知识的系统,改而转向完善机器学习。

神经网络的繁荣期

在新的机器学习范式下,并没有立即出现向深度学习转变的一幕。相反,正如我们对关键术语的分析显示的那样,除了深度学习的核心机制神经网络外,研究人员还测试了众多方法。另外一些流行的技术包括贝叶斯网络、支持向量机和进化算法,所有这些技术都采用了不同的方法来查找数据中的模式。

神经网络取代其他机器学习方法

在20世纪90年代和2000年代,所有这些方法之间存在着稳定的竞争。然后在2012年,一项关键的突破导致了另一次巨大变化。在旨在推动计算机视觉发展的一年一度的ImageNet比赛期间,一位名叫Geoffrey Hinton的研究人员及其在多伦多大学的同事在图像识别方面获得了最佳准确度,整整高出10个百分点。

他使用的技术即深度学习引发了一波新的研究:先是在视觉领域内部,然后扩大到另外的领域。随着越来越多的研究人员开始使用深度学习来获得令人印象深刻的结果,深度学习的受欢迎程度急剧提高,神经网络随之走红。

加强学习方兴未艾

我们的分析表明,在深度学习崛起后的几年里,AI领域出现了第三次也是最后一次转变。

除了机器学习中的不同技术外,还有三种不同的类型:监督学习、非监督学习和强化学习。监督学习是最常用的一种,也是迄今为止最实用的应用,它需要为机器馈送经过标记的数据。然而在过去几年,强化学习在论文摘要中的提及率迅速增加,它模仿通过奖惩机制训练动物的过程。

强化学习发展势头正猛

这并不是什么新想法,但几十年来它其实没有真正奏效过。Domingos说:“搞监督学习的人会取笑搞强化学习的人。”但是正如深度学习一样,一个关键时刻突然让强化学习家喻户晓。

那个时刻发生在2015年10月,当时DeepMind研发的AlphaGo用强化学习经过训练后,在古老的围棋比赛中击败了世界冠军。这立即对研究界产生了影响。

下一个十年

我们的分析只不过对AI研究领域的几种主要想法之间的激烈竞争给出了最近写照,但它表明了竭力复制智慧这条道路上的变幻莫测。Domingos说:“认识到没有人知道如何解决这个问题很重要。”

过去25年中使用的许多技术起源于大概同一个时期,即20世纪50年代,因每十年的挑战和成功而失宠和受宠。比如说,神经网络在60年代达到顶峰,80年代回光返照、奄奄一息,但随后因深度学习而重新获得了目前的人气。

换句话说,每十年实际上看到不同技术轮流唱主角:50年代末和60年代的神经网络,70年代的各种象征方法,80年代基于知识的系统,90年代的贝叶斯网络,2000年代的支持向量机,以及2010年代的神经网络。

Domingos表示,20世纪20年代应该没什么不同,这意味着深度学习时代可能很快就会结束。但研究界对于接下来会发生什么莫衷一是、众说纷纭——到底一种旧技术重新获得青睐,还是这个领域会创造一种全新的范式。

Domingos说:“如果你回答了这个问题,我想为这个答案申请专利。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31133

    浏览量

    269457
  • 论文
    +关注

    关注

    1

    文章

    103

    浏览量

    14969
  • 深度学习
    +关注

    关注

    73

    文章

    5507

    浏览量

    121276

原文标题:深度学习的时代将结束:25 年 16625 篇论文佐证

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习
    的头像 发表于 10-23 15:25 918次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习深度学习、神经网络等。这些技术构成了AI for Science的基石,使得
    发表于 10-14 09:16

    【「大模型时代的基础架构」阅读体验】+ 第一、二章学习感受

    今天阅读了《大模型时代的基础架构》前两章,还是比较轻松舒适的;再就是本书知识和我的工作领域没有任何关联,一切都是新鲜的,似乎每读一页都会有所收获,这种快乐的学习过程感觉也挺不错的。 第一章开始介绍了
    发表于 10-10 10:36

    【免费领取】AI人工智能学习资料(学习路线图+100余讲课程+虚拟仿真平台体验+项目源码+AI论文

    想要深入学习AI人工智能吗?现在机会来了!我们为初学者们准备了一份全面的资料包,包括学习路线、100余讲视频课程、AI在线实验平合体验、项目源码、A
    的头像 发表于 09-27 15:50 386次阅读
    【免费领取】<b class='flag-5'>AI</b>人工智能<b class='flag-5'>学习</b>资料(<b class='flag-5'>学习</b>路线图+100余讲课程+虚拟仿真平台体验+项目源码+<b class='flag-5'>AI</b><b class='flag-5'>论文</b>)

    基于AI深度学习的缺陷检测系统

    在工业生产中,缺陷检测是确保产品质量的关键环节。传统的人工检测方法不仅效率低下,且易受人为因素影响,导致误检和漏检问题频发。随着人工智能技术的飞速发展,特别是深度学习技术的崛起,基于AI深度
    的头像 发表于 07-08 10:30 1511次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能性的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型学习的基石,更是模型智能的源泉。本文将从模型权重的定义、作用、优化、管理以及应用等多个方面,
    的头像 发表于 07-04 11:49 1476次阅读

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1330次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度
    的头像 发表于 07-03 16:04 668次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1432次阅读

    利用深度循环神经网络对心电图降噪

    。可以使用深度学习的正则化技术克服这 个问题,调整超参数可能会获得比本文更好 的性能。另一个重要的结论来自于合成训练数 据对网络性能影响的分析。结果表明,使用人 工数据训练的网络比仅
    发表于 05-15 14:42

    一种利用光电容积描记(PPG)信号和深度学习模型对高血压分类的新方法

    ,因此在医疗信号方面它比其他模型产生了更高的准确度结果。从我们提出的模型 AvgPool_VGG-16 获得的结果表明,平均池化是比最大池化更适合信号图像分类的池化技术。此外,与之前提出的模型相比,该
    发表于 05-11 20:01

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来研究人员开始在视觉SLAM算法中引入
    发表于 04-23 17:18 1321次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    FPGA在深度学习应用中或将取代GPU

    基础设施,人们仍然没有定论。如果 Mipsology 成功完成了研究实验,许多正受 GPU 折磨的 AI 开发者将从中受益。 GPU 深度学习面临的挑战 三维图形是 GPU 拥有如此
    发表于 03-21 15:19

    【技术科普】主流的深度学习模型有哪些?AI开发工程师必备!

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络执行特定任务。 什么是
    的头像 发表于 01-30 15:26 643次阅读
    【技术科普】主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?<b class='flag-5'>AI</b>开发工程师必备!

    详解深度学习、神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度
    的头像 发表于 01-11 10:51 2212次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用