机器学习工程师团队负责人、Looker的首席产品官,以自己十几年的从业经历,以及对当下机器学习领域的观察和思考,认为未来机器学习准入门槛不断降低的前提下,“ML工程师”这个title将会消失。
我们可能正处在一个不再需要机器学习领域正规教育的变革阶段。
Looker首席产品官Nick Caldwell,是一位机器学习从业者,有着管理ML团队十多年的经验,而他最近有点被刺激到。
他的一名初级前端工程师决定利用黑客马拉松时间,去探索机器学习。通过fast.ai的在线课程,这位初级工程师获得了快速设置和部署TensorFlow模型的基础知识。
刚开始做的东西还比较搞笑,比如给人脸上贴胡子。但是在几天之内,他就做出了有实际应用价值的项目,并创建了一个可以在公司内部生产系统中可实施的ML模型。几周后,已经能够看到改模型对运营目标产生了可衡量的影响。
Nick在大学的时候,曾经认真系统的学过ML,并且在刚毕业就从事机器学习相关的工作,但是这位初级工程师的经历,让他开始重新审视他自己,以及机器学习这个领域。
他发现,机器学习已经进入到一个准入门槛非常低的阶段。他甚至怀疑,这位初级前端工程师可以使用现代工具包,在五天内获得他职业生涯的前五年的积累,虽然这话说的有点夸张。
他还认为,现在开始对学位、专业性方面的要求没有那么高了,当下的机器学习工具包,正在成为标准开发工具箱的一部分。
在20世纪90年代,想要尝试使用神经网络的工程师,通常需要从最简单的概念开始逐步延伸,对每一层的数学和原理都要理解和掌握。
今天,即使是初学者也可以使用Google Cloud AutoML等工具,几乎可以毫不费力的创建AI模型的各个方面,并产生有影响力的结果。
所有的复杂性都被抽掉了,但这是技术发展的规律,因为抽象适用于越来越强大的工具。现在已经没人为了学编程而去学习计算机构造,就好像没有人为了开车而去了解汽车的设计原理。
使用这些“一站式”工具包的现代开发人员,可能无法解释模型的数学原理,但不妨碍他做出可用性非常高的模型和产品。
fast.ai的创始人、前Kaggle总裁杰里Jeremy Howard,在最近的推文中说:“我从未接受过正式的技术教育,我实际上没有参加任何讲座或教程,我认为那都是在浪费时间。“
机器学习当前趋势的影响十分惊人。回想一下,传统雇用工程师、特别是在ML工程师的流程:首先我们需要应聘者至少是学士学位;其次还会在意有没有项目经验,最后可能还要求有一定的工作经验。
但从Nick的经历来看,如果把工程师定义为“拥有帮助客户解决问题、以及提出解决方案能力的人才”,那么他过去几年里亲自合作过的最好的ML工程师,都是自学成才的,并且工作经验不足5年!
因此Nick心中产生了疑问:在当前这么容易就能够学习ML,并产生非凡成果的时代,我们是否真的需要聘请一位“专业”ML工程师呢?是否真的需要卡ta的学位、工作经验呢?甚至说,我们是否真的有必要专门去应聘一位“机器学习工程师”呢?
他最终认为,我们必须重新思考如何寻找人才。用开源神经网络库Keras创建者FrançoisChollet的话说:“最好的人是90%+自我教育,无论他们是否拥有斯坦福大学的学位;计算机科学的学位的附加价值越来越微不足道。“
可能大多数招聘经理都认为这种态度太过极端。但时代在变,Nick现在的做法是:从Kaggle比赛中寻找ML候选人,查看ta的GitHub项目页,然后才是看他有没有大学学位。
Nick坚定的认为,是时候取消对CS学位的要求,并预言未来机器学习工程师这个title终将消失。
-
工程师
+关注
关注
59文章
1569浏览量
68504 -
机器
+关注
关注
0文章
781浏览量
40711 -
机器学习
+关注
关注
66文章
8408浏览量
132567
原文标题:机器学习准入门槛降低,机器学习工程师职位或将消失
文章出处:【微信号:aicapital,微信公众号:全球人工智能】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论