0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

推荐一本中文PyTorch书籍——PyTorch中文手册

DPVg_AI_era 来源:lq 2019-02-16 10:58 次阅读

今天我们强烈推荐一本中文PyTorch书籍 —— PyTorch 中文手册,并附上试读。本书提供PyTorch快速入门指南并与最新版本保持一致,其中包含的 Pytorch 教程全部通过测试保证可以成功运行。

PyTorch 是一个深度学习框架,旨在实现简单灵活的实验。

自 2017 年初首次推出,PyTorch 很快成为 AI 研究人员的热门选择并受到推崇。PyTorch 有许多优势,如采用 Python 语言、动态图机制、网络构建灵活以及拥有强大的社群等。由于其灵活、动态的编程环境和用户友好的界面,PyTorch 是快速实验的理想选择。

PyTorch 现在是GitHub 上增长速度第二快的开源项目,在过去的 12 个月里,贡献者增加了 2.8 倍。而且,去年 12 月在 NeurIPS 大会上,PyTorch 1.0 稳定版终于发布。PyTorch 1.0 增加了一系列强大的新功能,大有赶超深度学习框架老大哥 TensorFlow 之势。

因此,学习 PyTorch 大有裨益!

今天我们强烈推荐一本中文 PyTorch 书籍 ——PyTorch 中文手册 (pytorch handbook),并附上试读。这是一本开源的书籍,目标是帮助那些希望和使用 PyTorch 进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch 教程全部通过测试保证可以成功运行。

开源地址:

https://github.com/zergtant/pytorch-handbook

书籍介绍

这是一本开源的书籍,目标是帮助那些希望和使用 PyTorch 进行深度学习开发和研究的朋友快速入门。

由于本人水平有限,在写此教程的时候参考了一些网上的资料,在这里对他们表示敬意,我会在每个引用中附上原文地址,方便大家参考。

深度学习的技术在飞速的发展,同时 PyTorch 也在不断更新,且本人会逐步完善相关内容。

版本说明

由于 PyTorch 版本更迭,教程的版本会与 PyTorch 版本,保持一致。

12 月 8 日 PyTorch 已经发布 1.0 的稳定版。 API 的改动不是很大,本教程已经通过测试,保证能够在 1.0 中正常运行。 不过目前看影响不大,因为毕竟内容还不多。 v0.4.1 已经新建了分支作为存档,并且该不会再进行更新了。

目录

第一章: pytorch 入门

1. Pytorch 简介

2. Pytorch 环境搭建

3. PyTorch 深度学习:60 分钟快速入门 (官方)

张量

Autograd: 自动求导

神经网络

训练一个分类器

选读:数据并行处理 (多 GPU)

4. 相关资源介绍

第二章 基础

第一节 PyTorch 基础

张量

自动求导

神经网络包 nn 和优化器 optm

数据的加载和预处理

第二节 深度学习基础及数学原理

深度学习基础及数学原理

第三节 神经网络简介

神经网络简介

第四节 卷积神经网络

卷积神经网络

第五节 循环神经网络

循环神经网络

第三章 实践

第一节 logistic 回归二元分类

logistic 回归二元分类

第二节 CNN:MNIST 数据集手写数字识别

CNN:MNIST 数据集手写数字识别

第三节 RNN 实例:通过 Sin 预测 Cos

RNN 实例:通过 Sin 预测 Cos

第四章 提高

第一节 Fine-tuning

Fine-tuning

第二节 可视化

visdom

tensorboardx

第三节 fastai

第四节 数据处理技巧

第五节 并行计算

第五章 应用

第一节 Kaggle 介绍

第二节 结构化数据

第三节 计算机视觉

第四节 自然语言处理

第五节 协同过滤

第六章 资源

试读:Pytorch 简介、Pytorch 环境搭建

1.1 Pytorch 简介

1.1.1 PyTorch 的由来

很多人都会拿 PyTorch 和 Google 的 Tensorflow 进行比较,这个肯定是没有问题的,因为他们是最火的两个深度学习框架了。但是说到 PyTorch,其实应该先说 Torch。

1.1.2 Torch 是什么?

Torch 英译中:火炬

ATensorlibrarylikeNumpy,unlikeNumpyithasstrongGPUsupport.LuaisawrapperforTorch(Yes!youneedtohaveagoodunderstandingofLua),andforthatyouwillneedLuaRockspackagemanager.

Torch 是一个与 Numpy 类似的张量(Tensor)操作库,与 Numpy 不同的是 Torch 对 GPU 支持的很好,Lua 是 Torch 的上层包装。

Torchisnotgoinganywhere.PyTorchandTorchusethesameClibrariesthatcontainalltheperformance:TH,THC,THNN,THCUNNandtheywillcontinuetobeshared.WestillandwillhavecontinuedengineeringonTorchitself,andwehavenoimmediateplantoremovethat.

PyTorch 和 Torch 使用包含所有相同性能的 C 库:TH, THC, THNN, THCUNN,并且它们将继续共享这些库。

这样的回答就很明确了,其实 PyTorch 和 Torch 都使用的是相同的底层,只是使用了不同的上层包装语言。

注:LUA 虽然快,但是太小众了,所以才会有 PyTorch 的出现。

1.1.3 重新介绍 PyTorch

PyTorchisanopensourcemachinelearninglibraryforPython,basedonTorch,usedforapplicationssuchasnaturallanguageprocessing.ItisprimarilydevelopedbyFacebook'sartificial-intelligenceresearchgroup,andUber's"Pyro"softwareforprobabilisticprogrammingisbuiltonit.

PyTorch 是一个基于 Torch 的 Python 开源机器学习库,用于自然语言处理等应用程序。 它主要由 Facebook 的人工智能研究小组开发。Uber 的 "Pyro" 也是使用的这个库。

PyTorchisaPythonpackagethatprovidestwohigh-levelfeatures:Tensorcomputation(likeNumPy)withstrongGPUaccelerationDeepneuralnetworksbuiltonatape-basedautogradsystemYoucanreuseyourfavoritePythonpackagessuchasNumPy,SciPyandCythontoextendPyTorchwhenneeded.

PyTorch 是一个 Python 包,提供两个高级功能:

具有强大的 GPU 加速的张量计算(如 NumPy)

包含自动求导系统的的深度神经网络

1.1.4 对比 PyTorch 和 Tensorflow

没有好的框架,只有合适的框架, 这里有个简单的对比,所以这里就不详细再说了https://zhuanlan.zhihu.com/p/28636490 并且技术是发展的,这里的对比也不是绝对的,比如 Tensorflow 在 1.5 版的时候就引入了 Eager Execution 机制实现了动态图,PyTorch 的可视化,windows 支持,沿维翻转张量等问题都已经不是问题了。

1.1.5 再次总结

PyTorch 算是相当简洁优雅且高效快速的框架

设计追求最少的封装,尽量避免重复造轮子

算是所有的框架中面向对象设计的最优雅的一个,设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法

大佬支持,与 google 的 Tensorflow 类似,FAIR 的支持足以确保 PyTorch 获得持续的开发更新

不错的的文档(相比 FB 的其他项目,PyTorch 的文档简直算是完善了,参考 Thrift),PyTorch 作者亲自维护的论坛 供用户交流和求教问题

入门简单

所以如果以上信息有吸引你的内容,那么请一定要读完这本书:)

1.2 Pytorch 环境搭建

PyTorch 的安装十分简单,根据 PyTorch 官网,对系统选择和安装方式等灵活选择即可。 这里以 anaconda 为例,简单的说一下步骤和要点。 国内安装 anaconda 建议使用清华或者中科大 [http://mirrors.ustc.edu.cn/help/anaconda.html] 镜像,快的不是一点半点。

1.2.1 安装 Pytorch

anaconda 安装完成后可以开始创建环境,这里以 win10 系统为例。打开 Anaconda Prompt

#pytorch为环境名,这里创建python3.6版。condacreate-npytorchpython=3.6#切换到pytorch环境activatepytorch#安装GPU版本,根据cuda版本选择cuda80,cuda92,如果cuda是9.0版,则不需要#直接condainstallpytorch-cpytorch即可#win下查看cuda版本命令nvcc-Vcondainstallpytorchcuda92-cpytorch#cpu版本使用#condainstallpytorch-cpu-cpytorch#torchvision是torch提供的计算机视觉工具包,后面介绍pipinstalltorchvision

需要说明的一点是如果使用清华源,可以直接添加 pytorch 源镜像去掉,并且去掉 - c pytorch这样才能使用镜像源。

验证输入 python 进入

importtorchtorch.__version__#得到结果'0.4.1'

1.2.2 配置 Jupyter Notebook

新建的环境是没有安装安装 ipykernel 的所以无法注册到 Jupyter Notebook 中,所以先要准备下环境

#安装ipykernelcondainstallipykernel#写入环境python-mipykernelinstall--namepytorch--display-name"PytorchforDeeplearning"

下一步就是定制 Jupyter Notebook

#切换回基础环境activatebase#创建jupyternotebook配置文件jupyternotebook--generate-config##这里会显示创建jupyter_notebook_config.py的具体位置

打开文件,修改

c.NotebookApp.notebook_dir=''默认目录位置c.NotebookApp.iopub_data_rate_limit=100000000这个改大一些否则有可能报错

1.2.3 测试

至此 Pytorch 的开发环境安装完成,可以在开始菜单中打开 Jupyter Notebook 在 New 菜单中创建文件时选择 Pytorch for Deeplearning创建 PyTorch 的相关开发环境了

1.2.4 问题解决

问题 1:启动 python 提示编码错误

删除 .python_history来源

问题 2 默认目录设置不起效

打开快捷方式,看看快捷方式是否跟这个截图一样,如果是则删除% USERPROFILE%改参数会覆盖掉 notebook_dir 设置,导致配置不起效

如果你还发现其他问题,请直接留言

1.3 PyTorch 深度学习:60 分钟快速入门 (官方)

本章为官方网站的 [Deep Learning with PyTorch: A 60 Minute Blitz] (https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html) 的中文翻译,目前在网上看到所有中文翻译版本都已经过时了,所以才又从新翻译了一遍,确保与官方同步

目录

张量

Autograd: 自动求导本章是冲突的重灾区,建议阅读

神经网络

训练一个分类器

选读:数据并行处理 (多 GPU)

说明

本章中的所有图片均来自于 PyTorch 官网,版权归 PyTorch 所有.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121207
  • 开源项目
    +关注

    关注

    0

    文章

    37

    浏览量

    7197
  • pytorch
    +关注

    关注

    2

    文章

    808

    浏览量

    13235

原文标题:强推!《PyTorch中文手册》来了

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    利用Arm Kleidi技术实现PyTorch优化

    PyTorch个广泛应用的开源机器学习 (ML) 库。近年来,Arm 与合作伙伴通力协作,持续改进 PyTorch 的推理性能。本文将详细介绍如何利用 Arm Kleidi 技术提升 Arm
    的头像 发表于 12-23 09:19 173次阅读
    利用Arm Kleidi技术实现<b class='flag-5'>PyTorch</b>优化

    PyTorch 2.5.1: Bugs修复版发布

    ,前言 在深度学习框架的不断迭代中,PyTorch 社区始终致力于提供更稳定、更高效的工具。最近,PyTorch 2.5.1 版本正式发布,这个版本主要针对 2.5.0 中发现的问题进行了修复
    的头像 发表于 12-03 16:11 383次阅读
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修复版发布

    PyTorch 数据加载与处理方法

    PyTorch个流行的开源机器学习库,它提供了强大的工具来构建和训练深度学习模型。在构建模型之前,个重要的步骤是加载和处理数据。 1. PyTorch 数据加载基础 在
    的头像 发表于 11-05 17:37 409次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 218次阅读
    <b class='flag-5'>Pytorch</b>深度学习训练的方法

    pytorch怎么在pycharm中运行

    部分:PyTorch和PyCharm的安装 1.1 安装PyTorch PyTorch个开源的机器学习库,用于构建和训练神经网络。要
    的头像 发表于 08-01 16:22 1465次阅读

    pycharm如何调用pytorch

    引言 PyTorch个开源的机器学习库,广泛用于计算机视觉、自然语言处理等领域。PyCharm是个流行的Python集成开发环境(IDE),提供了代码编辑、调试、测试等功能。将PyTor
    的头像 发表于 08-01 15:41 622次阅读

    pytorch环境搭建详细步骤

    PyTorch作为个广泛使用的深度学习框架,其环境搭建对于从事机器学习和深度学习研究及开发的人员来说至关重要。以下将介绍PyTorch环境搭建的详细步骤,包括安装Anaconda、配置清华镜像源
    的头像 发表于 08-01 15:38 831次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要。在Windows操作系统上搭建PyTorch环境,需要综合考虑多个方面,包括软件安装、环境配置以及版本兼容性等。以下是
    的头像 发表于 07-16 18:29 1073次阅读

    pytorch如何训练自己的数据

    (https://pytorch.org/)来获取安装指令。安装完成后,我们还需要安装些常用的库,如NumPy、Pandas、Matplotlib等。 pip install torch numpy
    的头像 发表于 07-11 10:04 546次阅读

    pytorch中有神经网络模型吗

    当然,PyTorch个广泛使用的深度学习框架,它提供了许多预训练的神经网络模型。 PyTorch中的神经网络模型 1. 引言 深度学习是种基于人工神经网络的机器学习技术,它在图像
    的头像 发表于 07-11 09:59 705次阅读

    PyTorch的介绍与使用案例

    PyTorch个基于Python的开源机器学习库,它主要面向深度学习和科学计算领域。PyTorch由Meta Platforms(原Facebook)的人工智能研究团队开发,并逐渐发展成为深度
    的头像 发表于 07-10 14:19 407次阅读

    tensorflow和pytorch哪个更简单?

    PyTorch更简单。选择TensorFlow还是PyTorch取决于您的具体需求和偏好。如果您需要个易于使用、灵活且具有强大社区支持的框架,PyTorch可能是
    的头像 发表于 07-05 09:45 881次阅读

    PyTorch的特性和使用方法

    PyTorch个开源的Python机器学习库,由Meta Platforms(前身为Facebook)的人工智能研究团队开发,并于2017年1月正式推出。PyTorch基于Torch库,但
    的头像 发表于 07-02 14:27 574次阅读

    如何使用PyTorch建立网络模型

    PyTorch个基于Python的开源机器学习库,因其易用性、灵活性和强大的动态图特性,在深度学习领域得到了广泛应用。本文将从PyTorch的基本概念、网络模型构建、优化方法、实际应用等多个方面,深入探讨使用
    的头像 发表于 07-02 14:08 424次阅读

    使用PyTorch构建神经网络

    PyTorch个流行的深度学习框架,它以其简洁的API和强大的灵活性在学术界和工业界得到了广泛应用。在本文中,我们将深入探讨如何使用PyTorch构建神经网络,包括从基础概念到高级特性的全面解析。本文旨在为读者提供
    的头像 发表于 07-02 11:31 723次阅读