0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

盘点史上最全的Python算法集

电子工程师 来源:cc 2019-02-21 10:04 次阅读

本文是一些机器人算法(特别是自动导航算法)的Python代码合集。

其主要特点有以下三点:选择了在实践中广泛应用的算法;依赖最少;容易阅读,容易理解每个算法的基本思想。希望阅读本文后能对你有所帮助。

前排友情提示,文章较长,建议收藏后再看。

目录

环境需求

怎样使用

本地化

扩展卡尔曼滤波本地化

无损卡尔曼滤波本地化

粒子滤波本地化

直方图滤波本地化

映射

高斯网格映射

光线投射网格映射

k均值物体聚类

圆形拟合物体形状识别

SLAM

迭代最近点匹配

EKF SLAM

FastSLAM 1.0

FastSLAM 2.0

基于图的SLAM

路径规划

动态窗口方式

基于网格的搜索

迪杰斯特拉算法

A*算法

势场算法

模型预测路径生成

路径优化示例

查找表生成示例

状态晶格规划

均匀极性采样(Uniform polar sampling)

偏差极性采样(Biased polar sampling)

路线采样(Lane sampling)

随机路径图(PRM)规划

Voronoi路径图规划

快速搜索随机树(RRT)

基本RRT

RRT*

基于Dubins路径的RRT

基于Dubins路径的RRT*

基于reeds-shepp路径的RRT*

Informed RRT*

批量Informed RRT*

三次样条规划

B样条规划

贝济埃路径规划

五次多项式规划

Dubins路径规划

Reeds Shepp路径规划

基于LQR的路径规划

Frenet Frame中的最优路径

路径跟踪

纯追迹跟踪

史坦利控制

后轮反馈控制

线性二次regulator(LQR)转向控制

线性二次regulator(LQR)转向和速度控制

项目支持

环境需求

Python 3.6.x

numpy

scipy

matplotlib

pandas

cvxpy 0.4.x

怎样使用

安装必要的库;

克隆本代码仓库;

执行每个目录下的python脚本;

如果你喜欢,则收藏本代码库:)

本地化

扩展卡尔曼滤波本地化

该算法利用扩展卡尔曼滤波器(Extended Kalman Filter, EKF)实现传感器混合本地化。

蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为EKF估算的路径。

红色椭圆为EKF估算的协方差。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

无损卡尔曼滤波本地化

该算法利用无损卡尔曼滤波器(Unscented Kalman Filter, UKF)实现传感器混合本地化。

线和点的含义与EKF模拟的例子相同。

相关阅读:

利用无差别训练过的无损卡尔曼滤波进行机器人移动本地化

https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization

粒子滤波本地化

该算法利用粒子滤波器(Particle Filter, PF)实现传感器混合本地化。

蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为PF估算的路径。

该算法假设机器人能够测量与地标(RFID)之间的距离。

PF本地化会用到该测量结果。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

直方图滤波本地化

该算法是利用直方图滤波器(Histogram filter)实现二维本地化的例子。

红十字是实际位置,黑点是RFID的位置。

蓝色格子是直方图滤波器的概率位置。

在该模拟中,x,y是未知数,yaw已知。

滤波器整合了速度输入和从RFID获得距离观测数据进行本地化。

不需要初始位置。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

映射

高斯网格映射

本算法是二维高斯网格映射(Gaussian grid mapping)的例子。

光线投射网格映射

本算法是二维光线投射网格映射(Ray casting grid map)的例子。

k均值物体聚类

本算法是使用k均值算法进行二维物体聚类的例子。

圆形拟合物体形状识别

本算法是使用圆形拟合进行物体形状识别的例子。

蓝圈是实际的物体形状。

红叉是通过距离传感器观测到的点。

红圈是使用圆形拟合估计的物体形状。

SLAM

同时本地化和映射(Simultaneous Localization and Mapping,SLAM)的例子。

迭代最近点匹配

本算法是使用单值解构进行二维迭代最近点(Iterative Closest Point,ICP)匹配的例子。

它能计算从一些点到另一些点的旋转矩阵和平移矩阵。

相关阅读:

机器人运动介绍:迭代最近点算法

https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EKF SLAM

这是基于扩展卡尔曼滤波的SLAM示例。

蓝线是真实路径,黑线是导航推测路径,红线是EKF SLAM估计的路径。

绿叉是估计的地标。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

FastSLAM 1.0

这是用FastSLAM 1.0进行基于特征的SLAM的示例。

蓝线是实际路径,黑线是导航推测,红线是FastSLAM的推测路径。

红点是FastSLAM中的粒子。

黑点是地标,蓝叉是FastLSAM估算的地标位置。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

FastSLAM 2.0

这是用FastSLAM 2.0进行基于特征的SLAM的示例。

动画的含义与FastSLAM 1.0的情况相同。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

Tim Bailey的SLAM模拟

http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm

基于图的SLAM

这是基于图的SLAM的示例。

蓝线是实际路径。

黑线是导航推测路径。

红线是基于图的SLAM估算的路径。

黑星是地标,用于生成图的边。

相关阅读:

基于图的SLAM入门

http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf

路径规划

动态窗口方式

这是使用动态窗口方式(Dynamic Window Approach)进行二维导航的示例代码。

相关阅读:

用动态窗口方式避免碰撞

https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf

基于网格的搜索

迪杰斯特拉算法

这是利用迪杰斯特拉(Dijkstra)算法实现的基于二维网格的最短路径规划。

动画中青色点为搜索过的节点。

A*算法

下面是使用A星算法进行基于二维网格的最短路径规划。

动画中青色点为搜索过的节点。

启发算法为二维欧几里得距离。

势场算法

下面是使用势场算法进行基于二维网格的路径规划。

动画中蓝色的热区图显示了每个格子的势能。

相关阅读:

机器人运动规划:势能函数

https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

模型预测路径生成

下面是模型预测路径生成的路径优化示例。

算法用于状态晶格规划(state lattice planning)。

路径优化示例

查找表生成示例

相关阅读:

用于带轮子的机器人的最优不平整地形路径生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

状态晶格规划

这个脚本使用了状态晶格规划(state lattice planning)实现路径规划。

这段代码通过模型预测路径生成来解决边界问题。

相关阅读:

用于带轮子的机器人的最优不平整地形路径生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

用于复杂环境下的高性能运动机器人导航的可行运动的状态空间采样

http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf

均匀极性采样(Uniform polar sampling)

偏差极性采样(Biased polar sampling)

路线采样(Lane sampling)

随机路径图(PRM)规划

这个随机路径图(Probabilistic Road-Map,PRM)规划算法在图搜索上采用了迪杰斯特拉方法。

动画中的蓝点为采样点。

青色叉为迪杰斯特拉方法搜索过的点。

红线为PRM的最终路径。

相关阅读:

随机路径图

https://en.wikipedia.org/wiki/Probabilistic_roadmap

Voronoi路径图规划

这个Voronoi路径图(Probabilistic Road-Map,PRM)规划算法在图搜索上采用了迪杰斯特拉方法。

动画中的蓝点为Voronoi点。

青色叉为迪杰斯特拉方法搜索过的点。

红线为Voronoi路径图的最终路径。

相关阅读:

机器人运动规划

https://www.cs.cmu.edu/~motionplanning/lecture/Chap5-RoadMap-Methods_howie.pdf

快速搜索随机树(RRT)

基本RRT

这是个使用快速搜索随机树(Rapidly-Exploring Random Trees,RRT)的简单路径规划代码。

黑色圆为障碍物,绿线为搜索树,红叉为开始位置和目标位置。

RRT*

这是使用RRT*的路径规划代码。

黑色圆为障碍物,绿线为搜索树,红叉为开始位置和目标位置。

相关阅读:

最优运动规划的基于增量采样的算法

https://arxiv.org/abs/1005.0416

最优运动规划的基于采样的算法

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf

基于Dubins路径的RRT

为汽车形机器人提供的使用RRT和dubins路径规划的路径规划算法。

基于Dubins路径的RRT*

为汽车形机器人提供的使用RRT*和dubins路径规划的路径规划算法。

基于reeds-shepp路径的RRT*

为汽车形机器人提供的使用RRT*和reeds shepp路径规划的路径规划算法。

Informed RRT*

这是使用Informed RRT*的路径规划代码。

青色椭圆为Informed RRT*的启发采样域。

相关阅读:

Informed RRT*:通过对可接受的椭球启发的直接采样实现最优的基于采样的路径规划

https://arxiv.org/pdf/1404.2334.pdf

批量Informed RRT*

这是使用批量Informed RRT*的路径规划代码。

相关阅读:

批量Informed树(BIT*):通过对隐含随机几何图形进行启发式搜索实现基于采样的最优规划

https://arxiv.org/abs/1405.5848

闭合回路RRT*

使用闭合回路RRT*(Closed loop RRT*)实现的基于车辆模型的路径规划。

这段代码里,转向控制用的是纯追迹算法(pure-pursuit algorithm)。

速度控制采用了PID。

相关阅读:

使用闭合回路预测在复杂环境内实现运动规划

http://acl.mit.edu/papers/KuwataGNC08.pdf)

应用于自动城市驾驶的实时运动规划

http://acl.mit.edu/papers/KuwataTCST09.pdf

[1601.06326]采用闭合回路预测实现最优运动规划的基于采样的算法

https://arxiv.org/abs/1601.06326

LQR-RRT*

这是个使用LQR-RRT*的路径规划模拟。

LQR局部规划采用了双重积分运动模型。

相关阅读:

LQR-RRT*:使用自动推导扩展启发实现最优基于采样的运动规划

http://lis.csail.mit.edu/pubs/perez-icra12.pdf

MahanFathi/LQR-RRTstar:LQR-RRT*方法用于单摆相位中的随机运动规划

https://github.com/MahanFathi/LQR-RRTstar

三次样条规划

这是段三次路径规划的示例代码。

这段代码根据x-y的路点,利用三次样条生成一段曲率连续的路径。

每个点的指向角度也可以用解析的方式计算。

B样条规划

这是段使用B样条曲线进行规划的例子。

输入路点,它会利用B样条生成光滑的路径。

第一个和最后一个路点位于最后的路径上。

相关阅读:

B样条

https://en.wikipedia.org/wiki/B-spline

Eta^3样条路径规划

这是使用Eta ^ 3样条曲线的路径规划。

相关阅读:

eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots

https://ieeexplore.ieee.org/document/4339545/

贝济埃路径规划

贝济埃路径规划的示例代码。

根据四个控制点生成贝济埃路径。

改变起点和终点的偏移距离,可以生成不同的贝济埃路径:

相关阅读:

根据贝济埃曲线为自动驾驶汽车生成曲率连续的路径

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf

五次多项式规划

利用五次多项式进行路径规划。

它能根据五次多项式计算二维路径、速度和加速度。

相关阅读:

用于Agv In定位的局部路径规划和运动控制

http://ieeexplore.ieee.org/document/637936/

Dubins路径规划

Dubins路径规划的示例代码。

相关阅读:

Dubins路径

https://en.wikipedia.org/wiki/Dubins_path

Reeds Shepp路径规划

Reeds Shepp路径规划的示例代码。

相关阅读:

15.3.2 Reeds-Shepp曲线

http://planning.cs.uiuc.edu/node822.html

用于能前进和后退的汽车的最优路径

https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf

ghliu/pyReedsShepp:实现Reeds Shepp曲线

https://github.com/ghliu/pyReedsShepp

基于LQR的路径规划

为双重积分模型使用基于LQR的路径规划的示例代码。

Frenet Frame中的最优路径

这段代码在Frenet Frame中生成最优路径。

青色线为目标路径,黑色叉为障碍物。

红色线为预测的路径。

相关阅读:

Frenet Frame中的动态接到场景中的最优路径生成

https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf

Frenet Frame中的动态接到场景中的最优路径生成

https://www.youtube.com/watch?v=Cj6tAQe7UCY

路径跟踪

姿势控制跟踪

这是姿势控制跟踪的模拟。

相关阅读:

Robotics, Vision and Control - Fundamental Algorithms In MATLAB® Second, Completely Revised, Extended And Updated Edition | Peter Corke | Springer

https://www.springer.com/us/book/9783319544120

纯追迹跟踪

使用纯追迹(pure pursuit)转向控制和PID速度控制的路径跟踪模拟。

红线为目标路线,绿叉为纯追迹控制的目标点,蓝线为跟踪路线。

相关阅读:

城市中的自动驾驶汽车的运动规划和控制技术的调查

https://arxiv.org/abs/1604.07446

史坦利控制

使用史坦利(Stanley)转向控制和PID速度控制的路径跟踪模拟。

相关阅读:

史坦利:赢得DARPA大奖赛的机器人

http://robots.stanford.edu/papers/thrun.stanley05.pdf

用于自动驾驶机动车路径跟踪的自动转向方法

https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf

后轮反馈控制

利用后轮反馈转向控制和PID速度控制的路径跟踪模拟。

相关阅读:

城市中的自动驾驶汽车的运动规划和控制技术的调查

https://arxiv.org/abs/1604.07446

线性二次regulator(LQR)转向控制

使用LQR转向控制和PID速度控制的路径跟踪模拟。

相关阅读:

ApolloAuto/apollo:开源自动驾驶平台

https://github.com/ApolloAuto/apollo

线性二次regulator(LQR)转向和速度控制

使用LQR转向和速度控制的路径跟踪模拟。

相关阅读:

完全自动驾驶:系统和算法 - IEEE会议出版物

http://ieeexplore.ieee.org/document/5940562/

模型预测速度和转向控制

使用迭代线性模型预测转向和速度控制的路径跟踪模拟。

这段代码使用了cxvxpy作为最优建模工具。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4612

    浏览量

    92884
  • python
    +关注

    关注

    56

    文章

    4797

    浏览量

    84675

原文标题:这可能是史上最全的Python算法集!

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一个月速成python+OpenCV图像处理

    适用于哪些场景,然后通过Python编写代码来实现这些算法,并应用于实际项目中,实现图像的检测、识别、分类、定位、测量等目标。本文将介绍一个高效学习Python+O
    的头像 发表于 11-29 18:27 139次阅读
    一个月速成<b class='flag-5'>python</b>+OpenCV图像处理

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络算法开发环境搭建

    的软件包管理系统和环境管理系统,主要用于安装、更新、删除软件包及其依赖关系,并允许用户在不同环境之间轻松切换。用于后续安装Python等插件。在深度神经算法中使用的频率非常高的一款软件。 3.2
    发表于 10-10 09:28

    史上最全百吋阵营!海信电视新品被曝画质“炸裂”,或掀市场新风暴?

    根据知名数码博主“吴小杰WJie”爆料:月底海信电视将发布史上最全百吋阵营,基本涵盖了所有的价格区段,而且还有一款能够干翻旗舰电视的新品,配置和画质都非常炸裂,以及这次还有好几个首次发布的新功能,我
    的头像 发表于 09-26 18:39 1.5w次阅读
    <b class='flag-5'>史上</b><b class='flag-5'>最全</b>百吋阵营!海信电视新品被曝画质“炸裂”,或掀市场新风暴?

    pytorch和python的关系是什么

    在当今的人工智能领域,Python已经成为了最受欢迎的编程语言之一。Python的易学易用、丰富的库和框架以及强大的社区支持,使其成为了数据科学、机器学习和深度学习等领域的首选语言。而在深度学习领域
    的头像 发表于 08-01 15:27 1958次阅读

    Python建模算法与应用

    上成为理想的脚本语言,特别适用于快速的应用程序开发。本文将详细介绍Python在建模算法中的应用,包括常见的建模算法Python在建模中的优势、常用库以及实际案例。
    的头像 发表于 07-24 10:41 553次阅读

    最全开关电源传导与辐射超标整改方案

    电子发烧友网站提供《最全开关电源传导与辐射超标整改方案.pdf》资料免费下载
    发表于 07-23 12:31 16次下载

    Python在AI中的应用实例

    Python在人工智能(AI)领域的应用极为广泛且深入,从基础的数据处理、模型训练到高级的应用部署,Python都扮演着至关重要的角色。以下将详细探讨Python在AI中的几个关键应用实例,包括机器学习、深度学习、自然语言处理、
    的头像 发表于 07-19 17:16 1087次阅读

    opencv-python和opencv一样吗

    不一样。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。OpenCV-Python
    的头像 发表于 07-16 10:38 1195次阅读

    用pycharm进行python爬虫的步骤

    以下是使用PyCharm进行Python爬虫的步骤: 安装PyCharm和Python 首先,您需要安装PyCharm和Python。PyCharm是一个流行的Python集成开发环境
    的头像 发表于 07-11 10:11 848次阅读

    K折交叉验证算法与训练

    K折交叉验证算法与训练
    的头像 发表于 05-15 09:26 559次阅读

    盘点一下史上最全大语言模型训练中的网络技术

    人工智能的基础设施在大语言模型训练和推理过程中发挥了关键的作用。随着大语言模型规模不断增大,其对计算和通信的需求也在不断增加。高
    的头像 发表于 03-27 17:24 1470次阅读
    <b class='flag-5'>盘点</b>一下<b class='flag-5'>史上</b><b class='flag-5'>最全</b>大语言模型训练中的网络技术

    基于Python的地图绘制教程

    本文将介绍通过Python绘制地形图的方法,所需第三方Python相关模块包括 rasterio、geopandas、cartopy 等,可通过 pip 等方式安装。
    的头像 发表于 02-26 09:53 1205次阅读
    基于<b class='flag-5'>Python</b>的地图绘制教程

    如何使用linux下gdb来调试python程序

    如何使用linux下gdb来调试python程序  在Linux下,可以使用GDB(GNU调试器)来调试Python程序。GDB是一个强大的调试工具,可以帮助开发者诊断和修复程序中的错误。在本文
    的头像 发表于 01-31 10:41 2619次阅读

    水质电导率的测量方式(盘点

    水质电导率的测量方式(盘点
    的头像 发表于 01-29 13:58 1486次阅读

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动训练需要掌握一些重要的概念和技术。在本文中,我们将介绍如何使用Python中的一些常用库和算法
    的头像 发表于 01-12 16:06 591次阅读