0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能发展概况及应用分析

MVlJ_sapdaily 来源:cc 2019-02-25 09:18 次阅读

当前,人工智能AI)的竞争已白热化。谷歌、亚马逊、百度、阿里、腾讯等巨头持续投入,国内商汤、科大讯飞等商业上初步成功,AI 显示出巨大的商业应用潜力。在这股大潮中,全球领先的企业应用软件解决方案提供商 SAP 将机器学习物联网、大数据、商务分析等领域的技术整合在一起,融入 SAP 几十年的产业经验、流程和行业知识,以及先进的设计思维方法,推出 SAP Leonardo 这款数字化智慧企业平台,在企业 AI 应用中独辟一片天地。

那么到底 AI 是什么?

1

AI 概况及其应用

一提到 AI,很多人立即就想到了科幻电影和文学作品中的虚幻场景,或者电影「机器姬」里那种能超越人类的机器人。实际上当前 AI 的程度离这个很远。人类开发和利用 AI,是为了提升社会劳动生产率,有效降低劳动成本、优化产品和服务、创造新市场和就业等,为人类生产和生活带来更多价值和服务体验。简单讲,AI 是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予机器类人的能力。AI 可分为三个层次:

◆弱 AI:擅长单个方面的 AI 系统,如下棋、图像识别等。

◆强 AI:人类级别的 AI,在各方面都能和人类比肩,脑力活它都能干。

◆超 AI:各方面都比人类强一点,也可能各方面都比人类强很多很多倍。

目前弱 AI已成熟且无处不在,本文主要讲弱 AI。参考各方面的研究概括如下:现阶段 AI 是指 AI 大概念下机器学习领域中的深度学习,底层原理是基于大数据的统计分析技术,对数据有很大依赖性。在某些特定场景中能超越人类,最擅长的是对海量、高维度的信息的分类,结合深度学习可做到信息越多、维度越多,分类结果越准确。

2

制造业是当前 AI 应用的蓝海

制造企业里又有大量的有效数据,正契合 AI 的数据依赖性。AI 与制造业的管理、技术结合,结合企业的各种生产数据,可优化制造业各流程的效率,为各级管理者提供决策建议,甚至自主优化,让制造业插上智慧的翅膀。事实上,研究发现 AI 可降低制造商最高20%的加工成本,而这种减少最高有70%源自于更高的劳动生产率。

SAP 的调研分析发现,中国过去三年300项 AI 投资项目中,制造业相关的投入不到1%。据研究,全球 AI 及相关场景在制造业的市场在2016年约为1200亿美元, 2025年有望超过7200亿美元,复合年均增长率超过25%。制造业成为 AI 应用的蓝海。

AI在企业管理中的应用需求分析

1

AI 在企业管理中的需求分析

对 C 端用户的 AI 应用主要是带来便捷、舒适性和智能化的新体验,应用已极为普遍,不再赘述。本文重点讲 AI 在 B 端——制造类企业管理中的应用。

企业对于产品质量和生产效率提升的需求是永无止境的,产品设计需求来自对客户需求的把我和创新,同时通过供应链满足生产需求。AI 的应用场景和需求痛点范围在这里,主要应用场景可分为三类:

◆产品智能化研发及为产品注智;

◆供应链的智能化;

◆在制造和管理流程中运用人工智能提高产品质量和生产效率。

目前市场已有一些新兴公司在深耕这方面市场。

2

AI 在企业管理应用的点、线、面模型

当前 AI 服务商为客户提供服务时主要是应用场景描述,好处是容易让客户理解其应用价值,坏处是客户分不清 AI 的简单场景和复杂场景的区别。有位客户 CIO 问:SAP 的 AI 平台与其他 IT 公司的 AI 系统比有何特别优势?当我尝试从企业管理的角度来说明 SAP 的 AI 的优势时,对方立即认可:场景的描述模糊了流程和组织角色,企业管理层更多的是从企业组织化优势看待 AI 的应用。受此启发,本文思考了基于组织管理的点、线、面三层分析方式,来理解和说明 AI 在企业管理中的应用:

◆点场景:就是企业内的组织结点或岗位,针对具体人员和作业;

◆线场景:就是流程或完整的业务场景,主要是针对组织内外部的协同;

◆面场景:就是企业运营的整体,包括组织优化和管理创新。

鉴于组织管理的特点,企业里没有独立存在的点,三个层面之间是逐步演化、互相影响的。最简单的场景就是每个岗位的操作或决策,AI 的分析和学习功能可提供强有力的支持。线场景就涉及到多点(岗位)协同,这是企业管理层看重的。当 AI 从点到线逐步成熟应用起来,最终呈现面场景的 AI 化,企业走向智能化组织。

3

AI 与企业管理融合推动组织管理智能化

德勤的一份调研报告显示了管理职能不同角色被 AI 替代的程度:

这反映了企业内部不同业务部门对 AI 的需求的差异:

1) 点场景的需求

业务操作类场景:

◆财务管理:包括自动付款清账、收款信息自动处理、财税票据自动处理等。这些工作极其消耗精力且易出错。

◆产品质检:质量大数据和机器视觉系统可快速扫描产品质量,提高效率。汽车及零部件成功案例很多。

◆智能自动化分拣:将物料在无序或半无序状态下完成分拣,通常很令人头痛。无序分拣机器人可应解决混杂分拣、上下料及拆垛等。

◆智能客服:人工客服成本高、服务效果,难以标准化且流动性大,AI 在客服领域中已经在发挥作用。预计到2020年,85%的客服工作将依靠 AI 完成。

决策活动场景:

◆管理决策&模拟:包括生产资源分配、生产过程优化,以及供应链需求/销量的智能化预测、大宗物品的采购决策、供应链风险管控等。AI 主要是解决管理层信息不完备,无法综合考量决策风险的问题。

◆产品设计:市场和客户反馈的数据、信息往往不完备、不连续,AI 可根据既定目标和约束探索多种设计方案,协助开发人员进行测试和学习,快速迭代、寻优。

总结:这个层面的应用实质是 AI 赋能个体,是单人与逻辑机器的协作,较成熟。

2) 线场景的需求

上面的点场景中企业管理层容易把 AI 技术化理解,而企业真正关注的是如何让 AI 融入组织形成组织化的加速器,促进企业内外的协同效率和准确度,让企业管理智能化。

线场景实际上就是多点协作的工作场景,表面看跟传统流程管理很像,但背后是 AI 与数字化管理平台的强化与互动:后者是企业管理的技术平台和业务数据主要来源,前者一方面解读内、外部的业务数据,同时协同企业各部门高效、准确地响应其他部门和外部的反馈信息,并在不断深化学习中做到更好。这意味着企业管理的 AI 应用,不是简单的AI+流程,而是互相影响,AI要持续性地优化工作流程,并通过不断深化学习来推进企业管理的优化,甚至进化。

客观讲,这种情况已经超出传统的企业管理理念和操作方法,还需要配套的方法论支持这个场景的模型化和数据的收集。后面的案例会详细解释。

3) 面场景的需求

理论上讲,面场景是企业运营的整体智能化,是 AI 与企业运营管理的深度融合,不仅仅是组织优化、管理创新。随着智能制造的飞速发展,未来很多硬件都会应用物联网芯片和人工智能技术,制造业的管理模式也会发生重大调整。

但人工智能仍处于发展早期,当企业内的产品设计、供应链、制造过程、财务管理、客户服务等主要业务场景逐步智能化后,多条线就自然具备面的效应,企业客观上就走上了智能化管理。但由于组织管理的内在震荡性,这不会是个线性过程,还需要 AI 技术的进步和组织管理的创新。

SAP的AI+数字化平台助力企业走向智慧化管理

针对企业智能化管理的发展趋势,SAP 推出了智慧企业模型和解决方案,核心就是将 AI 与企业成熟应用的数字化系统相结合,强化组织内每个环节、流程,推动组织整体的作业效率和协同度,最终提高组织的整体有效性。在这个架构中,从点场景到线场景,AI 平台赋能企业的整体管理,为企业构建可持续学习、进化的智能化管理平台。

目前这个平台已在很多行业的点场景中成功应用。下图是 SAP 的汽车零部件客户利用 AI 辅助冲压零件的质量预测分析,比传统的方法达成更好的质量预测结果。这是成熟的应用,有很多成功案例。其它如财务、质检、供应链及设计、决策等方面的应用也都很成熟。

AI辅助冲压零件质量预测分析

同时,线场景方面的应用也逐步成熟起来。下面案例是空调行业的安装服务场景,除了内部参与者,还有外部的设计师、经销商、施工队和用户等。这个场景已经导致顾客内卷化,成为企业服务活动的参与者。

大金空调安装服务旅程图

整体看,这个场景有以下特点:

◆场景所涉及到内外相关者已超出了传统的 IT 系统和流程所涵盖的范围。

◆服务过程很多信息是非结构化的,智能产品传回的是有时间连续性的实时数据。

◆此场景需要大量弹性的线下沟通和处理,以协同所有的数据和作业活动。

基于图像识别的在线安装质量检查方案,通过设计思维研讨会与AI平台结合,可给客户带来如下价值:

◆清楚了解技术、投资成本、扩展性和投资回报率;

◆准确预测第三方安装的空调(AC)系统的潜在安装质量风险;

◆能够根据质量风险对安装进行优先级排序,让工程师能以最少的努力尽可能地提高质量保证效率,并提高客户满意度。

◆能够使用统一的实时数据平台处理结构化和非结构化数据,并在复杂的大数据环境中确保数据质量。

总结:从上述分析和案例看,AI 增强并扩展了企业管理的效能和范围。鉴于制造业信息化程度相对很高,积累了大量的业务数据,这些优质数据资源如被AI充分利用,可以进一步解决制造类企业中的实际问题。

SAP的AI平台助力企业管理走向智能化

随着 AI 再点场景的普及,并在线性场景的从简单到复杂的逐步深入应用,AI 会深刻地影响企业的整体管理方式。用埃森哲一句话作为结束语:AI 系统不仅能够推动流程自动化,提高工作效率;更重要的是实现人机协作,从根本上改变工作性质,从而彻底颠覆企业运营和员工管理方式。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自动化
    +关注

    关注

    29

    文章

    5598

    浏览量

    79416
  • 人工智能
    +关注

    关注

    1792

    文章

    47442

    浏览量

    238993

原文标题:从企业角度看 AI 如何推进管理创新

文章出处:【微信号:sapdaily,微信公众号:SAP天天事】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    LLM技术对人工智能发展的影响

    随着人工智能技术的飞速发展,大型语言模型(LLM)技术已经成为推动AI领域进步的关键力量。LLM技术通过深度学习和自然语言处理技术,使得机器能够理解和生成自然语言,极大地扩展了人工智能的应用范围
    的头像 发表于 11-08 09:28 429次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析能力,加速生命科学
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规律。 2. 高性能
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了数据处理
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17