0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

汽车自动驾驶的“那些事” 你知道吗?

ml8z_IV_Technol 来源: 聂磊 作者:电子发烧友 2019-02-28 11:35 次阅读

身处汽车行业,深感汽车行业的技术革新是迅速的,这次只拿自动驾驶聊聊个人的一些想法和观点,因自动驾驶作为当前热点及未来汽车发展的方向,我们有必要拿出来整理分析一波。

目前自动驾驶的很多技术其实在机器人领域很早就已出现和应用,比如导航定位、机器视觉等,因此自动驾驶可以算是机器人领域应用的一块分支,所以我们也不必过分夸大它有多牛掰。因自动驾驶系统的实验最早可追溯到1920年,而真正意义上的第一辆自动驾驶汽车也在1977年由日本的Tsukuba Mechanical Engineering Laboratory开发出来。随着时代的变化,该技术也得到了快速的发展和推广,Waymo在2018年10月份曾透漏其在自动驾驶的测试里程已超过16000000km并以每月1600000km的速度增长,在12月Waymo成为了美国第一家商业化自动驾驶出行服务的公司,这样的技术进步和取得的成果是着实不易的,当然我也对自动驾驶真正的商业化持保守态度,但在这个AI机器学习、大数据、车联网盛起的年代(个人认为这些虽是未来方向,但过去几年都有被过度炒作的嫌疑),其是未来出行方式的必然选择是不争的事实,很多零部件供应商和传统OEM都在自动驾驶领域积极部署以期抢占先机。

前段时间看到Tier1的零部件供应商“BOSCH豪掷10亿欧元在德建立半导体工厂从而掌握自动驾驶芯片化的核心竞争力”的消息,个人对该消息其实是不Care的,因BOSCH在自动驾驶解决方案的研究其实很早就开始并测试验证,如果哪个零部件供应商或OEM不在自动驾驶领域方面进行规划和部署反而是一种不正常。

一.自动驾驶的分级

对自动驾驶的分级,全球汽车行业公认两个组织提出的:美国高速公路安全管理局(NHTSA)和美国机动车工程师学会(SAE),但在这两者中又以按SAE的分级标准居多,SAE将自动驾驶层级划分为6级,如下:

对于各个等级的详细介绍,网上有很多,我这里不再详细赘述。

二.自动驾驶的相关技术

无人驾驶技术涉及多技术集成和多学科交叉,一无人驾驶系统包含多个传感器:激光雷达、RGB和深度摄像头、GPS、长距雷达、短距雷达、IMU等,同时又需整合多个软件模块(包括路径规划、避障、定位、图像识别和环境建模等),此外还需要强大的硬件基于软件功能实时处理海量的传感器信息并实现对车辆的控制,因此对系统设计和软硬件资源都提出了更高的要求。

无人驾驶系统首先获取并处理所处环境信息,基于数据和算法确定当前所处位置,并根据所设定的目标规划一条合理最优的运动路径,从而驱动车辆向目标移动并规避移动过程中的障碍物或对紧急情况采取必要的安全措施,因此所涉及的技术包括:导航定位、路径规划、图像识别、机器学习和传感器融合等相关技术。

下面选三个方面大体聊聊

1. 导航定位技术

导航定位技术是自动驾驶系统的关键和基础,它能反映车辆自主性和智能性,在自动驾驶领域,导航定位主要采用SLAM技术。SLAM技术的实现途径有视觉SLAM(VSLAM)和激光雷达SLAM(Ladar-SLAM),激光雷达SLAM是目前最稳定、最可靠且性能最高的SLAM方式,在无人驾驶领域大都采用基于激光雷达的SLAM技术。SLAM当前实现的方式大致有两类:基于概率模型和非概率模型的方法,其中基于概率的方法是当前研究的重点,基于概率模型的算法主要有基于卡尔曼滤波的SLAM、基于粒子滤波的FastSLAM等。

2. 路径规划技术

路径规划主要有全局和局部路径规划两种,全局路径规划需要依赖已建立的环境地图(即先验地图),其作用就是建立一条从起点到目标点的全局路线;而局部路径规划则是根据全局路径基于动态环境所进行的一种路径规划技术,从而适应存在未知障碍物或障碍物存在变化的环境。

3. 传感器融合技术

自动驾驶车会载有激光雷达、RGB-D深度摄像头、超声波等不同位置的多个同类或不同类的传感器。而为了对各个传感器所获取的局部环境信息加以综合,形成对环境完整准确的描述,必须采用多传感器融合技术来克服单个传感器所具有的局限性。多传感器融合技术主要有基于参数推理的贝叶斯推理、基于模糊集理论的方法、基于神经网络法及卡尔曼滤波法等,其中应用最为广泛的多传感器融合技术是卡尔曼滤波法。

三. 所需技能Get

从上所述可知自动驾驶所涉及的学科和技术很多,但作为个人应该在哪些方面进行个人技能的提升,从而能够成为一名自动驾驶工程师呢?我这里只列出四个方面的技能要求:

1. 扎实的数学功底

当你一脚踏入机器人和无人驾驶领域,你会经常接触到诸如贝叶斯滤波、卡尔曼滤波、粒子滤波、高斯分布等一系列让你怀疑人生的专业术语,而这些原理的推导往往需要扎实的线性代数和概率统计功底,此外强大的数学基础是进行算法设计和优化的基础,越来越发觉线性代数、概率统计、数值计算在当前AI、机器学习和大数据盛行时代下的重要性,因为当前很多问题最终都可通过概率统计和线性代数进行建模和求解,曾看到某位大神这么说过“优秀的工程师和科学家在职业生涯中要学至少五次线性代数”,看到这,我等后辈是不是心凉了很多,但大家莫慌,让我们撸起袖子就是干!!!

2. 过硬的编程技术

首先,发表个人观点:在可预见的未来,C是最好的语言,Linux是最好的操作系统。当然这不是说让大家有选择性的选择自己应学习哪种编程语言,因为具体到工作则需要兼备多种编程语言或跨平台的开发能力,每个人需要根据自己的实际情况去学习,例如嵌入式开发毫无疑问优先选择C,而算法开发则可能会使用C++PythonMatlab/Simulink,而不同的应用又可能依赖于不同的平台才能运行,例如很多自动驾驶项目都基于ROS做的算法和应用开发,而ROS作为中间件则依赖于Linux,因此具体情况具体分析,但多种编程语言的掌握是必须的。

3. 软硬件开发能力

掌握编程语言是进行软件功能开发的基础,同时也会为我们查问题提供了保障,而软件功能则是需求的实现,如何将一复杂的系统需求通过编程的手段实现则是一种能力。此外,软件功能的实现最终需依赖于硬件,对于硬件的设计及工作原理的掌握也是不可或缺的。

4. 熟悉汽车电子的开发流程

IT行业的软件开发不同于汽车软件的开发,汽车行业有诸多的标准要遵循且还有诸多的测试验证要求,在可靠性和安全性方面有着更高的要求。汽车行业需要可靠的软件设计同时还需要满足嵌入式的需求,而这些要求的实现需要高质量的代码、充分的测试覆盖度和丰富的批产经验等方面来支撑。

因此自动驾驶作为一门交叉学科,其涉及的方面很多,每个人不可能包揽每项的冠军,而应选择成为某一领域的专家。

四.普及依然漫长

关于自动驾驶,正如英国 Millbrook 试验场首席自动驾驶汽车工程师 Peter Stoker所说:“如今,有关自动驾驶的炒作从来没有停止,但我们必须明确告诉大家,自动驾驶汽车并不会在未来几年中大量出现在人们的生活中。而且,即使自动驾驶汽车最终真正到来,也一定是先在有限区域中进行有选择性的逐步推广,比如“货物运输”和“最后一英里通勤”等行驶路线较为固定的行驶场景。”因此技术的普及依然需要很长的时间,至于原因,我这里只摘三个方面进行说明:

1. 系统的可靠性

这一点应该是最重要的一点,因安全是汽车行业的生命线,自动驾驶要想走向实际应用,其最终必须能在复杂的环境中保证系统的稳定性并提供足够的驾驶安全,而在这方面我认为很多自动驾驶公司其实都还没做到这种地步。

2. 成本限制

自动驾驶汽车功能的实现需要依赖于不同或相同的多个传感器支持和强大的硬件实现,以必不可少的激光雷达为例,车用激光雷达行业先导公司Velodyne推出的激光雷达具有测量精度高、性能优越的特点,同时具有丰富的产品线,包括16线、32线及64线等产品,但同样价格也是高昂的。

因此可想而知,单单激光雷达的成本就已很高,如果再加上长短距雷达、摄像头等传感器和硬件,整车的成本无疑是高昂的。

3. 充分的实验验证

自动驾驶汽车功能的测试验证需要足够且丰富的样本数据,样本数据的采集及算法的训练需要耗费长期且大量的时间积累,如下是2016年几大零部件供应商和OEM在该方面测试的里程数汇总。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自动驾驶
    +关注

    关注

    784

    文章

    13801

    浏览量

    166423

原文标题:聊聊自动驾驶

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    MEMS技术在自动驾驶汽车中的应用

    MEMS技术在自动驾驶汽车中的应用主要体现在传感器方面,这些传感器为自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术在自动驾驶
    的头像 发表于 11-20 10:19 335次阅读

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶
    的头像 发表于 10-29 13:42 507次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>安全吗?

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    自动驾驶技术的典型应用 自动驾驶技术涉及到哪些技术

    自动驾驶技术的典型应用 自动驾驶技术是一种依赖计算机、无人驾驶设备以及各种传感器,实现汽车自主行驶的技术。它通过使用人工智能、视觉计算、雷达、监控装置和全球定位系统等技术,使
    的头像 发表于 10-18 17:31 740次阅读

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术中不可或缺的一部分。以下是FPGA在自动驾驶
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    低,适合用于实现高效的图像算法,如车道线检测、交通标志识别等。 雷达和LiDAR处理:自动驾驶汽车通常会使用雷达和LiDAR(激光雷达)等多种传感器来获取环境信息。FPGA能够协助完成这些传感器
    发表于 07-29 17:09

    自动驾驶汽车如何识别障碍物

    自动驾驶汽车识别障碍物是一个复杂而关键的过程,它依赖于多种传感器和技术的协同工作。这些传感器主要包括激光雷达(LiDAR)、雷达、摄像头以及超声波雷达等,它们各自具有不同的工作原理和优势,共同为自动驾驶
    的头像 发表于 07-23 16:40 1184次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对自动驾驶
    的头像 发表于 07-23 16:00 2298次阅读

    吉利与Foretellix合作开发自动驾驶汽车

    汽车制造商吉利与以色列的自动驾驶安全技术领军企业Foretellix达成了战略合作。此次合作旨在确保自动驾驶汽车的安全大规模部署,并寻求降低吉利的研发成本,同时提升开发效率。
    的头像 发表于 05-14 09:52 430次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    模态精准感知信息,使自动驾驶系统可以实时精准地感知道路上的各种状况。 昱感微融合感知产品方案创新性地 将可见光摄像头、红外摄像头以及4D毫米波雷达的探测数据在前端(数据获取时)交互,将各传感器的探测
    发表于 04-11 10:26

    大众汽车和Mobileye加强自动驾驶合作

    美国智能驾驶芯片巨头Mobileye与大众汽车集团近日宣布,在自动驾驶领域深化合作,共同推动全新自动驾驶功能在大众旗下量产车型的应用。Mobileye依托其领先的Mobileye
    的头像 发表于 03-22 11:46 923次阅读

    自动驾驶汽车技术 | 车载雷达系统

    自动驾驶汽车技术 | 车载雷达系统
    的头像 发表于 03-20 08:09 3077次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>技术 | 车载雷达系统

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将对这些问题进行深入的剖析,并提出相应的解决方
    的头像 发表于 03-14 08:38 1134次阅读

    辊压机轴承位磨损修复知道那些

    电子发烧友网站提供《辊压机轴承位磨损修复知道那些.docx》资料免费下载
    发表于 03-12 15:10 0次下载

    Waymo自愿召回444辆自动驾驶汽车 L4的自动驾驶还有很多路要走

    近日,谷歌旗下的自动驾驶部门Waymo自愿召回了444辆自动驾驶汽车,原因是其软件可能无法准确预测拖曳车辆的运动轨迹
    的头像 发表于 02-26 10:22 1191次阅读
    Waymo自愿召回444辆<b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b> L4的<b class='flag-5'>自动驾驶</b>还有很多路要走