近场探棒(near-field probe)在找出电路板、缆线和外壳中的电磁辐射源时相当有用;但某些状况下,经过近场探棒侦测而显示在频谱分析仪上的信号,会产生误导。通过一些经验,你将知道如何克服这些问题。
近场探棒为疑难解答工具,首先你必须确定产品有电磁干扰的问题,通常会在兼容性测试(compliance test )或预先认证(pre-compliance)检测时发现。应先透过远场测量,找出超过法规限制辐射量要求的频率,然后再找出辐射源。
产品调试测试––电路板
假设你的产品超过辐射标准,而且您试图找出原因,可试试以下方法。若想找到电路板的辐射源,你可能需要在频谱分析仪上连接一个简单的磁场探棒 (图1),然后手动拿着探棒在电路板四处检测,或是使用自动探棒测试器(automated probe station)近距离检查。当探棒扫过电路板时,频谱分析仪将会显示振幅最大的干扰谐波(offending harmonics)在何处。当你发现高次谐波(higher harmonic)时,你就会说“啊哈,我找到它了。”
在你真的确认是否有远场干扰辐射源前,必须考虑以下两件事:
哪些因素造成探棒找到这些信号?测试的地点是否为传播场(propagating field) ?
磁场由电流所产生,在已知频率下无论电流多高,你可在频谱分析仪上看到测量出的峰值(peak)。高电流的状况可能会发生在电路板的线路上或是芯片内部等。
你必须注意印刷电路板的堆叠方式,用近场探棒检测层数较少的电路板较为容易。然而,碰到线路密度分布高的电路板,特别是堆叠很多层的板子,还有在不同层采用不同电流源的状况下,透过近场探棒作检测会变得比较困难,需要特别留意与分析。
这里有其它可能原因造成高频时产生高电流的状况。如果你只是在离电路板高一点的位置找高近场(high near-fields),你可能会认为是去耦电容(decoupling capacitor)造成高度辐射。在下此结论之前,先考虑一下去耦电容本身的功能。
去耦电容是为了在电路板电源层 (power plane)和接地层(ground plane)间(或线路间)的高频环境下产生低阻抗路径(low impedance path),防止高频噪声电压产生。若有任何噪声电压产生(例如由芯片所产生的),都会在电容中发现低阻抗路径。
这代表电容将会导入电流来降低噪声电压。因为电容的功能就是导入电流而控制电源层和接地层的噪声,因此,近场磁探棒可以在电容间探测到较大的近场(greater near fields)。这并非代表电容会造成问题,而是电容在执行本身应有的功能。
其次,不是所有的近场都会传播。透过数学的证明方法已经超出了本文的范围,但非传播式的近场只能储存能量。使用近场探棒,你无法确定近场测量是传播或非传播式。这并不意味着近场磁探棒没有帮助,它只是告诉我们在下结论前时须先谨慎思考。
产品调试测试––外壳屏蔽
另一种很常见的调试方式是使用磁探棒在屏蔽内四处“嗅探”干扰辐射波由何处泄出,因为表面电流(surface currents)无法穿透外壳屏蔽(shielded enclosure)的结构缝隙,而会围绕着这些孔隙,而磁探棒通常可以感测到。目前这种测试的结果都很良好。
如果是大型屏蔽(electrically large,在频率方面大于1/4波长),并存在噪声电流,便会产生驻波,这取决于外壳大小。如果频率对应的外壳尺寸是1/2波长,即使附近没有孔隙,驻波也会在外壳达到最强。这种情况让多名EMC工程师猜想辐射波也许由屏蔽的金属墙穿透,而非透过孔隙。
由于集肤效应(skin effect),射频电流通常不能穿越屏蔽的金属墙,而必须透过孔隙或是缆线/连接器而穿透出去。在此例中,磁场探棒的高读取无法找出噪声泄漏点。
测量可适当地安抚情绪。但是,你应当了解测量方式,以确保你的测量结果符合原先的需求,还有做出的结论合理且符合物理原则。切勿盲目地接受测量结果,并且依此骤下结论。
总归一句,当去耦电容的设计适当、且连接电感(connection inductance)最小化时,其使用的好处会比坏处多。
-
电路板
+关注
关注
140文章
4868浏览量
97149 -
电磁干扰
+关注
关注
36文章
2268浏览量
105272 -
去耦电容
+关注
关注
11文章
315浏览量
22293
原文标题:20190306---如何正确使用近场探棒,找出辐射源?
文章出处:【微信号:EMC_EMI,微信公众号:电磁兼容EMC】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论