0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习中的相关概念、数学知识和各种经典算法

电子工程师 来源:lp 2019-03-15 14:40 次阅读

近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各种经典算法。机器之心看到后,也迫不及待的推广给更多的读者。完整的 PDF 请从文后作者公开的链接下载

在介绍中,Jim Liang写到:

人工智能是这两年风头正劲的领域,也是未来具有颠覆性可能的新领域。不少人尝试去学习机器学习相关的知识。然而,一旦越过最初的 overview 阶段,很多人就开始打退堂鼓了,然后迅速放弃。

为什么会这样?

极 高 的 学 习 曲 线

首当其冲就是数学,涉及统计学、微积分、概率、线性代数等,大家虽然都学过高等数学,但如果你还记得里面的细节,算你牛。更可能的情况是,多数人都对高等数学忘记了,面对各种算法里的大量公式,感到厌恶,甚至恐惧。

其次因为机器学习本身是一个综合性学科,而且是一个快速发展的学科,知识点散乱,缺乏系统性。

市面上的机器学习/深度学习书籍、文章、教程,遍地开花,但能以清晰的方式表达、循序渐进地讲解的教程,其实不多,大量的教程没有考虑到学习者的基础,使得初学者感到挫败和困惑。

图 解 机 器 学 习

正是对机器学习的过程中的痛苦有切身体会,我希望能做一份教程,以浅显易懂的方式去讲解它,降低大家的学习门槛。我为此花费了数月时间,经常做到深夜,把自己的学习笔记整理成了这份教程。

从结构来看,全部教程包含两部分:

Part 1 介绍了基本概念,包括:

机器学习的流程

数据处理

建模

评估指标(如 MSE、ROC 曲线)

模型部署

过度拟合

正则化等

在第一部分,作者先介绍了如今应用普遍的机器学习:从自动驾驶、语音助手到机器人。其中有些思想,也是众多读者们了解过的,例如:为何机器学习在这个时候会火(大数据、计算力、更好的算法);机器学习、人工智能、深度学习三者的关系等。

除了这些基础概念,这份教程也对机器学习模型的开发流程做了图像化展示(如下图),即使对此不太了解的读者,也能通过这种流程展示有所学习。

建立机器学习解决方案的步骤

在 Part1 的其他小节,作者以类似的图像展示,对数据、建模、模型部署等内容做了详细介绍,这里就不一一列举,可以从原报告查看。

在 Part2,作者介绍了 常用的算法,包括:

线性回归

逻辑回归

神经网络

SVM

Knn

K-Means

决策树

随机森林

AdaBoost

朴素贝叶斯

梯度下降

主成分分析

这部分包含了大量的数学公式,但作者尽力注解了其中的每个公式,从而充分、清晰地表达了众多数学概念。

例如在「神经网络」部分,作者整理了 59 页的笔记(从 311 页到 369 页)。作者从人脑中的神经元架构说起,介绍了人工神经网络(ANN)、人工神经元工作的原理。这份笔记非常注重图像化的概念解释,理解起来非常直观。

例如,下图中的概念解释很形象地展现了生物神经元和人工神经元工作方式的相似性。

生物神经元的树突输入-轴突输出模式和人工神经元的输入输出模式对比。

过拟合的解释。

人工神经元的基础结构。

在涉及到数学公式时,作者会在旁边有详细的注解,如下图所示:

对于并列的可选项(如激活函数、常用神经网络架构等),也会有全面的列表:

常用的激活函数。

然后会有每个激活函数的单独介绍:

Sigmoid 激活函数。

用神经网络分类手写数字的前向传播示例(softmax 激活函数)。

对于神经网络中较为复杂的概念(如求导、反向传播),几张图就能解释清楚:

关于神经网络的完整训练过程,作者用简略流程图+计算细节展开的方式呈现:

反向传播算法完整流程。

前向传播部分的计算细节。

就像前面提到的,这部分除了「神经网络」的介绍,还包括随机森林、梯度下降等概念的介绍,读者们可查看原教程。

总结

看完这份教程之后,小编觉得这是一份包罗万象的学习笔记,既适合非专业人士了解有关机器学习的基础概念,又适合有专业背景的学生进一步学习。

写教程是为了自己持续学习,分享教程是为了帮助更多人学习。就像作者所说,「Learning by doing/teaching, 写这个教程主要是强迫自己持续学习,另外,也想分享给他人,希望能帮助到更多想学习 Machine Learning 的人,降低大家的学习痛苦。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4789

    浏览量

    101578
  • 人工智能
    +关注

    关注

    1800

    文章

    48068

    浏览量

    242098
  • 机器学习
    +关注

    关注

    66

    文章

    8460

    浏览量

    133402

原文标题:520页的机器学习笔记

文章出处:【微信号:machine_vision_1,微信公众号:机器视觉智能检测】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    人工智能和机器学习以及Edge AI的概念与应用

    与人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器
    的头像 发表于 01-25 17:37 412次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的<b class='flag-5'>概念</b>与应用

    传统机器学习方法和应用指导

    在上一篇文章,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础
    的头像 发表于 12-30 09:16 550次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    自然语言处理与机器学习的关系 自然语言处理的基本概念及步骤

    Learning,简称ML)是人工智能的一个核心领域,它使计算机能够从数据中学习并做出预测或决策。自然语言处理与机器学习之间有着密切的关系,因为机器
    的头像 发表于 12-05 15:21 1087次阅读

    NPU与机器学习算法的关系

    紧密。 NPU的起源与特点 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)项目中提出,旨在为TensorFlow框架提供专用的硬件加速。NPU的设计目标是提高机器学习
    的头像 发表于 11-15 09:19 763次阅读

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    。 时间序列的单调性理论是数学求导。下面是使用EWMA分析股票价格变动,以决定买入还是卖出。通过仿真数据,这种指数移动平均的技术剔除了短期波动,有助看清股票整体趋势。 通过对本章学习,对时间序列的研究目的、方法与特征有了较全面梳理了解。其中代码仿真更可以辅助我们更好掌
    发表于 08-17 21:12

    【「时间序列与机器学习」阅读体验】+ 鸟瞰这本书

    清晰,从时间序列分析的基础理论出发,逐步深入到机器学习算法在时间序列预测的应用,内容全面,循序渐进。每一章都经过精心设计,对理论知识进行了
    发表于 08-12 11:28

    【《大语言模型应用指南》阅读体验】+ 基础篇

    的内容,阅读虽慢,但在这一学习过程也掌握了许多新知识,为后续章节的阅读打下基础,这是一个快乐的学习过程。 基础篇从人工智能的起源讲起,提出了机器
    发表于 07-25 14:33

    如何理解机器学习的训练集、验证集和测试集

    理解机器学习的训练集、验证集和测试集,是掌握机器学习核心概念和流程的重要一步。这三者不仅构成了
    的头像 发表于 07-10 15:45 5149次阅读

    迁移学习的基本概念和实现方法

    迁移学习(Transfer Learning)是机器学习领域中的一个重要概念,其核心思想是利用在一个任务或领域中学到的知识来加速或改进另一个
    的头像 发表于 07-04 17:30 2198次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1579次阅读

    机器学习在数据分析的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的数据分析能力。本文将深入探讨机器
    的头像 发表于 07-02 11:22 928次阅读

    机器学习经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据寻找一种相应的关系。Iris鸢尾花数据集是一个经典
    的头像 发表于 06-27 08:27 1775次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的<b class='flag-5'>经典</b><b class='flag-5'>算法</b>与应用

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    应用,将理论基础与实践案例相结合,作者凭借扎实的数学功底及其在企业界的丰富实践经验,将机器学习与时间序列分析巧妙融合在书中。 全书书共分为8章,系统介绍时间序列的基础知识、常用预测方法
    发表于 06-25 15:00

    自动控制原理需要哪些基础知识

    基础数学知识学习自动控制原理的前提。这些数学知识包括: 线性代数:矩阵运算、特征值和特征向量、线性空间等概念。 微积分:导数、积分、微分方程等基本
    的头像 发表于 06-11 11:08 3717次阅读

    机器学习怎么进入人工智能

    ,人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 452次阅读