0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

必读!生成对抗网络GAN论文TOP 10

DPVg_AI_era 来源:lp 2019-03-20 09:02 次阅读

生成对抗网络 (GAN) 是深度学习中最有趣、最受欢迎的应用之一。本文列出了 10 篇关于 GAN 的论文,这些论文将为你提供一个很好的对 GAN 的介绍,帮助你理解最先进技术的基础。

本文选择的10篇GAN论文包括:

DCGANs

Improved Techniques for Training GANs

Conditional GANs

Progressively Growing GANs

BigGAN

StyleGAN

CycleGAN

Pix2Pix

StackGAN

Generative Adversarial Networks

DCGANs — Radford et al.(2015)

我建议你以DCGAN这篇论文来开启你的GAN之旅。这篇论文展示了卷积层如何与GAN一起使用,并为此提供了一系列架构指南。这篇论文还讨论了GAN特征的可视化、潜在空间插值、利用判别器特征来训练分类器、评估结果等问题。所有这些问题都必然会出现在你的GAN研究中。

总之,DCGAN论文是一篇必读的GAN论文,因为它以一种非常清晰的方式定义架构,因此很容易从一些代码开始,并开始形成开发GAN的直觉。

DCGAN模型:具有上采样卷积层的生成器架构

论文:

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Alec Radford, Luke Metz, Soumith Chintala

https://arxiv.org/abs/1511.06434

改进GAN训练的技术—— Salimans et al.(2016)

这篇论文(作者包括Ian Goodfellow)根据上述DCGAN论文中列出的架构指南,提供了一系列建议。这篇论文将帮助你了解GAN不稳定性的最佳假设。此外,本文还提供了许多用于稳定DCGAN训练的其他机器,包括特征匹配、minibatch识别、历史平均、单边标签平滑和虚拟批标准化。使用这些技巧来构建一个简单的DCGAN实现是一个很好的练习,有助于更深入地了解GAN。

论文:

Improved Techniques for Training GANs

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen

https://arxiv.org/abs/1606.03498

Conditional GANs — Mirza and Osindero(2014)

这是一篇很好的论文,读起来很顺畅。条件GAN(Conditional GAN)是最先进的GAN之一。论文展示了如何整合数据的类标签,从而使GAN训练更加稳定。利用先验信息对GAN进行调节这样的概念,在此后的GAN研究中是一个反复出现的主题,对于侧重于image-to-image或text-to-image的论文尤其重要。

Conditional GAN架构:除了随机噪声向量z之外,类标签y被连接在一起作为网络的输入

论文:

Conditional Generative Adversarial Nets

Mehdi Mirza, Simon Osindero

https://arxiv.org/abs/1411.1784

Progressively Growing GANs— Karras et al.(2017)

Progressively Growing GAN (PG-GAN)有着惊人的结果,以及对GAN问题的创造性方法,因此也是一篇必读论文。

这篇GAN论文来自NVIDIA Research,提出以一种渐进增大(progressive growing)的方式训练GAN,通过使用逐渐增大的GAN网络(称为PG-GAN)和精心处理的CelebA-HQ数据集,实现了效果令人惊叹的生成图像。作者表示,这种方式不仅稳定了训练,GAN生成的图像也是迄今为止质量最好的。

它的关键想法是渐进地增大生成器和鉴别器:从低分辨率开始,随着训练的进展,添加新的层对越来越精细的细节进行建模。“Progressive Growing”指的是先训练4x4的网络,然后训练8x8,不断增大,最终达到1024x1024。这既加快了训练速度,又大大稳定了训练速度,并且生成的图像质量非常高。

Progressively Growing GAN的多尺度架构,模型从4×4 逐步增大到1024×1024

论文:

Progressive Growing of GANs for Improved Quality, Stability, and Variation

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen

https://arxiv.org/abs/1710.10196

相关阅读:

迄今最真实的GAN:英伟达渐进增大方式训练GAN,生成前所未有高清图像

BigGAN — Brock et al.(2019)

BigGAN模型是基于ImageNet生成图像质量最高的模型之一。该模型很难在本地机器上实现,而且BigGAN有许多组件,如Self-Attention、Spectral Normalization和带有投影鉴别器的cGAN,这些组件在各自的论文中都有更好的解释。不过,这篇论文对构成当前最先进技术水平的基础论文的思想提供了很好的概述,因此非常值得阅读。

BigGAN生成的图像

论文:

Large Scale GAN Training for High Fidelity Natural Image Synthesis

Andrew Brock, Jeff Donahue, Karen Simonyan

https://arxiv.org/abs/1809.11096

StyleGAN — Karras et al.(2019)

StyleGAN模型可以说是最先进的,特别是利用了潜在空间控制。该模型借鉴了神经风格迁移中一种称为自适应实例标准化(AdaIN)的机制来控制潜在空间向量z。映射网络和AdaIN条件在整个生成器模型中的分布的结合使得很难自己实现一个StyleGAN,但它仍是一篇很好的论文,包含了许多有趣的想法。

StyleGAN架构,允许潜在空间控制

论文:

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras, Samuli Laine, Timo Aila

https://arxiv.org/abs/1812.04948

CycleGAN — Zhu et al.(2017)

CycleGAN的论文不同于前面列举的6篇论文,因为它讨论的是image-to-image的转换问题,而不是随机向量的图像合成问题。CycleGAN更具体地处理了没有成对训练样本的image-to-image转换的情况。然而,由于Cycle-Consistency loss公式的优雅性,以及如何稳定GAN训练的启发性,这是一篇很好的论文。CycleGAN有很多很酷的应用,比如超分辨率,风格转换,例如将马的图像变成斑马。

Cycle Consistency Loss背后的主要想法,一个句子从法语翻译成英语,再翻译回法语,应该跟原来的是同一个句子

论文:

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros

https://arxiv.org/abs/1703.10593

Pix2Pix — Isola et al.(2016)

Pix2Pix是另一种图像到图像转换的GAN模型。该框架使用成对的训练样本,并在GAN模型中使用多种不同的配置。读这篇论文时,我觉得最有趣部分是关于PatchGAN的讨论。PatchGAN通过观察图像的70×70的区域来判断它们是真的还是假的,而不是查看整个图像。该模型还展示了一个有趣的U-Net风格的生成器架构,以及在生成器模型中使用ResNet风格的skip connections。Pix2Pix有很多很酷的应用,比如将草图转换成逼真的照片。

使用成对的训练样本进行Image-to-Image转换

论文:

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros

https://arxiv.org/abs/1611.07004

StackGAN — Zhang et al.(2017)

StackGAN的论文与本列表中的前几篇论文相比非常不同。它与Conditional GAN和Progressively Growing GANs最为相似。StackGAN模型的工作原理与Progressively Growing GANs相似,因为它可以在多个尺度上工作。StackGAN首先输出分辨率为64×64的图像,然后将其作为先验信息生成一个256×256分辨率的图像。

StackGAN是从自然语言文本生成图像。这是通过改变文本嵌入来实现的,以便捕获视觉特征。这是一篇非常有趣的文章,如果StyleGAN中显示的潜在空间控制与StackGAN中定义的自然语言接口相结合,想必会非常令人惊讶。

基于文本嵌入的StackGAN多尺度架构背后的想法

论文:

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas

https://arxiv.org/abs/1612.03242

Generative Adversarial Networks — Goodfellow et al.(2014)

Ian Goodfellow的原始GAN论文对任何研究GAN的人来说都是必读的。这篇论文定义了GAN框架,并讨论了“非饱和”损失函数。论文还给出了最优判别器的推导,这是近年来GAN论文中经常出现的一个证明。论文还在MNIST、TFD和CIFAR-10图像数据集上对GAN的有效性进行了实验验证。

论文:

Generative Adversarial Networks

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

https://arxiv.org/abs/1406.2661

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1933

    浏览量

    73316
  • 分类器
    +关注

    关注

    0

    文章

    152

    浏览量

    13180
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121118

原文标题:必读!生成对抗网络GAN论文TOP 10

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    罗姆宣布全面委托台积电代工GaN产品

    近日,日本功率器件大厂罗姆半导体(ROHM)宣布了一项重要决策,将在GaN功率半导体领域加强与台积电的合作。据悉,罗姆将全面委托台积电代工生产GaN功率半导体器件,以水平分工的方式提升竞争力,对抗海外竞争对手。
    的头像 发表于 10-10 17:17 509次阅读

    2024年汽车操作系统趋势及TOP10分析报告

    2024年汽车操作系统趋势及TOP10分析报告
    的头像 发表于 09-30 08:07 341次阅读
    2024年汽车操作系统趋势及<b class='flag-5'>TOP10</b>分析报告

    请问LM311能准确的交截生成对应的PWM波形吗?

    UC3825, TLV3501输入正是100k的正弦波 输入负是100kHz的锯齿波 二者交截生成PWM波形 请问LM311能准确的交截生成对应的PWM波形吗 之前使用UC3525里面自带的比较器做的,LM311能达到这样的速度吗
    发表于 08-06 07:46

    基于神经网络的全息图生成算法

    全息图生成技术作为光学与计算机科学交叉领域的重要研究方向,近年来随着神经网络技术的飞速发展,取得了显著进展。基于神经网络的全息图生成算法,以其强大的非线性拟合能力和高效的计算性能,为全
    的头像 发表于 07-09 15:54 448次阅读

    生成对抗网络(GANs)的原理与应用案例

    生成对抗网络(Generative Adversarial Networks,GANs)是一种由蒙特利尔大学的Ian Goodfellow等人在2014年提出的深度学习算法。GANs通过构建两个
    的头像 发表于 07-09 11:34 1008次阅读

    人工神经网络模型的分类有哪些

    详细介绍人工神经网络的分类,包括前馈神经网络、卷积神经网络、循环神经网络、深度神经网络生成对抗
    的头像 发表于 07-05 09:13 1169次阅读

    神经网络架构有哪些

    、语音识别、自然语言处理等多个领域。本文将对几种主要的神经网络架构进行详细介绍,包括前馈神经网络、循环神经网络、卷积神经网络生成对抗
    的头像 发表于 07-01 14:16 695次阅读

    瑞萨完成对Transphorm的收购

    2024年6月20日完成对氮化镓(GaN)功率半导体全球供应商Transphorm, Inc.(以下“Transphorm”,Nasdaq:TGAN)的收购。随着收购的完成,瑞萨电子将立即开始提供
    的头像 发表于 06-21 13:59 745次阅读

    思科完成对Isovalent的收购

    全球领先的网络技术公司思科(Cisco)近日宣布,已完成对开源云原生网络与安全领域的佼佼者Isovalent的收购。
    的头像 发表于 05-06 10:41 633次阅读

    深度学习生成对抗网络GAN)全解析

    GANs真正的能力来源于它们遵循的对抗训练模式。生成器的权重是基于判别器的损失所学习到的。因此,生成器被它生成的图像所推动着进行训练,很难知道生成
    发表于 03-29 14:42 4527次阅读
    深度学习<b class='flag-5'>生成对抗</b><b class='flag-5'>网络</b>(<b class='flag-5'>GAN</b>)全解析

    在使用spc5 stdio的时候生成对应的功能,main.c里面为什么没有调用对应的接口?

    在使用spc5 stdio的时候生成对应的功能,main.c里面怎么没有调用对应的接口; eg:这是怎么回事?
    发表于 03-26 07:00

    2023年全球动力电池TOP10“变局”解析

    2023年度全球动力电池TOP10合计装机662.72GWh,占总装机量的93.7%。
    的头像 发表于 02-25 09:37 3713次阅读
    2023年全球动力电池<b class='flag-5'>TOP10</b>“变局”解析

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗
    的头像 发表于 02-19 16:43 1734次阅读

    BluGlass完成对GaNWorks的收购

    激光二极管,已完成对合同制造商GaNWorks Foundry Inc.的收购,在其位于硅谷的激光生产工厂安装并验证了核心GaN晶圆加工设备。 测试已证实,n侧晶圆金属化、晶圆减薄和棒切割设备符合
    的头像 发表于 01-17 14:59 356次阅读

    基于国产AI编译器ICRAFT部署YOLOv5边缘端计算的实战案例

    人工智能领域中各种算法模型的不断研究和改进。随着深度学习的兴起,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络GAN)、
    的头像 发表于 01-03 10:17 3101次阅读
    基于国产AI编译器ICRAFT部署YOLOv5边缘端计算的实战案例