0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

亚马逊神经网络类图书中最受欢迎的10本书

电子工程师 来源:lp 2019-03-20 15:23 次阅读

近年来,数据科学和数据挖掘越来越热门,许多人对神经网络深度学习十分感兴趣,该主题下的书籍也呈现出爆炸式增长,判断一本书对你是否有用的方法就是看看其他人在看什么书

本文我们罗列了截止2019年3月7日亚马逊神经网络类图书中最受欢迎的 10 本书,希望对大家的选择有所帮助

1、《机器学习实战:基于Scikit-Learn和TensorFlow

本书主要分为两个部分。第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络。

2、《Python深度学习》

本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。曾获得豆瓣满分10分的好评

3、《The Book of Why》

这是一本非常好的计算机科普读物,由图灵奖获得者Judea Pearl执笔,展示了理解因果关系如何彻底改变科学并将革新人工智能

4、《Python神经网络编程

本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改善神经网络的性能,并加深对相关知识的理解。

5、《终极算法》

作者指出机器学习五大学派,每个学派都有自己的主算法,能帮助人们解决特定的问题。而如果整合所有这些算法的优点,就有可能找到一种“终极算法”,该算法可以获得过去、现在和未来的所有知识,这也必将创造新的人类文明。

6、《Python机器学习》

本书向读者介绍了机器学习和深度学习算法,并向你展示了如何将书中的实例方法运用于实际工作中,通过这本书你不仅可以了解了解数据科学,机器学习和深度学习中的关键框架,还能学会使用TensorFlow库掌握深度神经网络实现

7、《Learning From Data》

这本书是为机器学习的短期课程而设计的。它可以帮助打下一个良好的数据科学基础,书中很好地平衡了理论和实践的占比。

8、《增强人类》

本书对人类的未来具有深刻的洞察力,鼓舞人心并且态度严谨,是你想象和创造新现实的指南。对于想要了解新方向和下一步未来的人来说,这是一本必读书籍。

9、《Machine Learning with Python 》

本书主要介绍如何使用Python和Scikit-learn库开发成功的机器学习应用程序,通过本书,你将学到机器学习相关的重要概念和实际应用,最流行的机器学习算法的优缺点等

10、《MATLAB Deep Learning》

在这本书中,你从机器学习基础开始,然后继续学习神经网络,深度学习,然后是卷积神经网络。全书使用使用MATLAB作为底层编程语言和工具,用于本书的示例和案例研究。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4772

    浏览量

    100832
  • 亚马逊
    +关注

    关注

    8

    文章

    2667

    浏览量

    83401
  • 深度学习
    +关注

    关注

    73

    文章

    5504

    浏览量

    121213

原文标题:美亚上最受欢迎的 10 本神经网络书籍

文章出处:【微信号:TheBigData1024,微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 277次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 495次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1571次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1119次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 585次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 791次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1315次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 909次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 819次阅读

    bp神经网络是深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与深度
    的头像 发表于 07-03 10:14 862次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1211次阅读

    卷积神经网络的原理与实现

    核心思想是通过卷积操作提取输入数据的特征。与传统的神经网络不同,卷积神经网络具有参数共享和局部连接的特点,这使得其在处理图像等高维数据时具有更高的效率和更好的性能。 卷积层 卷积层是卷积神经网络
    的头像 发表于 07-02 16:47 605次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 4167次阅读

    深度神经网络模型有哪些

    、Sigmoid或Tanh。 卷积神经网络(Convolutional Neural Networks,CNN): 卷积神经网络是深度学习中最
    的头像 发表于 07-02 10:00 1475次阅读

    FPGA图书分享系列-2024.01.31

    FPGA在金融领域的具体应用案例,帮助读者了解理论与实践的结合,以及如何在真实世界的问题中应用FPGA技术。 研究前景:指出了未来神经网络加速器研究的潜力,为有志于在该领域深入研究的学者和工程师提供了方向
    发表于 01-31 21:14