3月10日,埃塞俄比亚航空一架波音737-8飞机发生坠机空难,3月12日,埃塞俄比亚航空在其社交媒体上证实,失事客机的黑匣子已被找到,两个黑匣子其中之一发现于搜索检查过的废品堆中,另一个是在地下约20米处找到的,已由埃塞航空工作人员带回检测。
3月16日,法国民航安全调查分析局宣布成功导出埃塞俄比亚航空公司失事客机其中一只黑匣子存储的数据,并移交埃塞方面调查人员。17日埃塞俄比亚交通部方面发布消息说,对10日失事的埃塞航空波音737-8客机黑匣子数据的分析显示,这起空难与去年10月印尼狮航波音737-8客机空难有“很接近的相似之处”。
作为飞机数据客观、真实、全面的记录者,黑匣子是飞机失事后查明事故原因的最可靠、最科学、最有效的手段。伴随着航空事业的发展,黑匣子在飞机日常安全维护、飞行状态监测、消除事故隐患以及故障定位方面也发挥着越来越重要的作用,甚至可以说充当着飞行过程中不可或缺的角色。
黑匣子的外表不是黑色的,而是醒目的橙色,表面还贴有方便夜间搜寻的反光标识。因为飞参记录器记录的数据必须通过专用的下载设备和回放软件才能解读和分析,加上事故的记录器存储的数据非常关键和神秘,再加上在一些事故中记录器经过火烧后变成了黑色,所以人们将飞参记录器称为“黑匣子”。
飞机上飞行数据记录系统(FDRS,Flight Data Recorder System)和座舱音频记录系统(CVR,Cockpit Voice Recorder)简称为“飞参”,主要是由采集器和记录器组成。“黑匣子”是飞参记录器的俗称。一般民航客机上会同时安装一个记录数据、一个记录语音的两个黑匣子。
黑匣子作为一种事关飞行安全的重要航空电子设备,具有抗强冲击、抗穿透、抗高温火烧、抗深海压力、耐海水浸泡、耐腐蚀性液体浸泡等特种防护能力,能在各种飞机事故中保存其内部存储的信息。
飞机通电后,黑匣子将自动启动工作,记录飞机相关系统运行和状态信息、飞行人员操作信息以及机上相关音视频信息,不受人员控制。根据民航要求,黑匣子的数据信息是实时采集于飞机传感器和相关系统,必须保留断电前至少25小时的飞行数据和2小时的音频数据,记录的数据不可更改。
一般来说,飞行数据黑匣子安装在飞机尾部,使飞机坠毁时对其的破坏降到最低;座舱音频黑匣子安装在飞机前部,有利于语音信号的采集和记录。黑匣子连接飞机应急供电电源,确保能工作到最后时刻。
按照黑匣子的用途,它被形象地称为“法官”、“教官”和“医生”。所谓法官,是基于飞行事故调查的用途,事故发生后通过找回黑匣子,对数据译码分析,可以判定事故真正原因,避免同类事故再次发生;所谓教官,是指在飞行员监控方面的功能,通过日常分析黑匣子的数据,纠正飞行员不良驾驶习惯,预防事故发生;所谓医生,则是在飞机故障诊断与维护方面的作用,通过对黑匣子数据进行日常分析,监控、预测飞机主要部件的健康状态,排查故障隐患,防止故障发展为事故。
为了事故调查时获取客观、全面的信息,黑匣子记录数据的种类和数量不断增加。数据种类从最初的飞行、音频数据,拓展到了视频和数据链数据;参数数量从最初的五个逐步发展到目前的几百个甚至上千个。飞行数据一般包括飞机和发动机运行状态、飞行员操纵情况、飞机外部信息等;音频数据一般包括正、副驾驶员的通话、飞机与地面的通话、机组之间的通话以及驾驶舱环境声音等;视频数据一般包括驾驶舱仪表显示、飞行员动作、飞机前方视景、起落架收放状态等。通过专用数据回放软件,可用黑匣子数据直观真实地再现飞机飞行过程,自动分析飞机可能存在的故障隐患和人员操作异常,预防故障或事故发生,极大地提高了航空飞行安全水平。
黑匣子的发展历史
黑匣子伴随着飞行安全的迫切需求以及飞机制造水平的不断进步而快速发展,一般行业内比较认同将黑匣子从诞生到现在发展分为四代:
第一代黑匣子
第一代黑匣子诞生于上世纪50年代初,是在飞机设计试飞记录设备的基础上改进而来的,其工作原理为通过在金属箔带上用针留下划痕来反映数据变化曲线,仅能记录航向、高度、空速、垂直过载和时间等5个飞行参数。
第二代黑匣子
第二代黑匣子出现于上世纪50年代末,其工作原理类似于普通磁带机,但在磁带机外面加装了具有抗冲击、耐火烧等能力的保护外壳,按照美国联邦航空局当时颁布的第一个黑匣子标准TSO-C51,要求黑匣子能够承受100g(重力加速度)、持续11ms的冲击,以及1100℃、30分钟的火烧。1966年标准更新为TSO-C51a,将抗强冲击指标提高到1000g,并增加了抗穿透、静态挤压、耐海水浸泡、耐腐蚀液体浸泡等要求。第二代黑匣子一般可以记录几十个参数,并同时出现了座舱音频记录器。
第三代黑匣子
第三代黑匣子出现于上世纪90年代。随着微电子技术的突飞猛进,黑匣子开始采用半导体存储器记录数据,随着对飞机坠毁时黑匣子破坏情况的不断深入认识,黑匣子的抗坠毁能力标准更新为TSO-C124,抗强冲击指标提高到3400g,1100℃高温火烧时间提高到60分钟,耐海水浸泡时间由36小时增加到30天,增加了耐6000米深海压力要求。1996年,美国联邦航空局发布了TSO-C124a标准,增加了抗260℃、10小时的火烧要求。第三代黑匣子记录参数一般在几百个,功能已从飞行事故调查,逐渐延伸到日常飞行员监控、飞机故障诊断与维护。
第四代黑匣子
近年来出现的新一代黑匣子可以记录视频信息,记录的参数数量也多达几千个,并且能够通过卫星等数据链定期传输黑匣子的关键数据。但由于通讯带宽和信号盲点以及气象环境等影响,数据实时传输方式无法完全取代传统黑匣子的作用。此外,新型抛放式黑匣子也已经出现,它能够在飞机坠毁时自动与机体分离,并具备水上漂浮和无线电、卫星定位功能。
黑匣子如何定位、打捞
当前黑匣子在陆地的定位主要依靠人工目视,找到飞机残骸后,利用黑匣子外表明亮、独特的颜色和反光标识进行搜寻。
黑匣子在水下定位主要依靠水下定位信标(ULB,Underwater Locator Beacon)。它是一个电池供电的水下超声波脉冲发生器,牢固地安装在黑匣子外部。一旦黑匣子入水,信标上的水敏开关启动信标工作,通过信标的金属外壳把频率为37.5kHz的超声波信号发射到周围水域,每秒一个脉冲。其内置电池可连续工作至少30天,30天后随着电量逐渐耗尽,超声波信号将越来越微弱直至停止工作。
信标可以在6096米的深度内发出超声波,但在距离信标1800~3600米的范围内才能够被仪器探测到,海水的状态、周围的船只、海洋动物、石油管道以及其他因素造成的周围噪音都会影响信标的被探测范围。
水下定位信标发出信号时,可以通过专用声呐探测仪进行定位。由于信标信号的可探测范围相对于大海而言极其有限,一般先要进行残骸大致范围定位,然后再通过拖曳式声呐缩小定位范围,最后再使用可以定位信号来源方向的水听器,定位黑匣子的方位。
如果黑匣子沉入浅海,可由潜水员进行打捞。如果黑匣子沉入深海,超过人工潜水深度时,需要使用专门的搜索、打捞设备,一般可使用轮船放下水下线控机器人,操作人员在船上通过综合显示控制台,控制机器人携带的海底声呐扫描设备、信标方位定位器、深海摄像头定位黑匣子,通过机械手打捞黑匣子。
抛放式黑匣子
2009年6月1日,法国航空公司一架从里约热内卢飞往巴黎的航班在大西洋上空失事,由于黑匣子沉入4000米海底,调查人员历时两年才打捞出黑匣子,耗费巨大。
该法航飞机安装的黑匣子带有水下定位信标,但由于信标作用距离仅为几千米,坠毁时可能与黑匣子分离,一旦打捞时间超过30天,定位信号可能消失,造成黑匣子定位困难。即使定位成功,深海打捞也存在难度大、时间长、费用高,甚至无法打捞等问题。据统计,1970~2009年,大型民用航空器在公海坠毁的36起事故中有4起未找到飞机残骸、9起未找到黑匣子,反映出水下定位信标定位方式存在一定的局限性。
除了黑匣子能够在飞机事故后发出定位信号,民航规章要求载客19人以上的飞机必须至少装备一台应急定位发射机(ELT,Emergency Locator Transmitter),其在事故后通过无线电和卫星方式发送定位信号。但如果在水面失事时幸存人员来不及携带和打开ELT,或ELT与残骸一同沉入水下,其就会失去作用。据统计,近年来飞行事故中ELT发挥了作用的仅为29%。从目前得到的信息看,MH370航班的多个ELT设备均还没有发挥作用。
此外,虽然传统黑匣子的抗坠毁性能标准在不断提高,然而在一些严重事故中,黑匣子损坏的情况仍时有发生。据统计,陆地坠毁的飞机中黑匣子存活率仅为82%。
为了解决水上事故后定位打捞黑匣子困难以及陆地事故后黑匣子存活率达不到100%的难题,抛放式黑匣子应运而生。此类黑匣子可通过其坠毁感知传感器监控飞机事故时触地或坠海瞬间的特征参数异常变化,迅速控制其与机体抛放分离,原理与汽车在撞击瞬间释放安全气囊相似。
黑匣子在事故瞬间离机后,如果落在陆地,可避免机体残骸的冲击和火烧等破坏;如果落在海上,可避免随机体坠入海底,其设计还可保证以预定的姿态漂浮在海面上。之后,黑匣子通过无线电和卫星自动发送定位信号。定位抛放黑匣子的过程首先是通过搜救卫星406MHz频率初步确定搜寻范围,然后再通过121.5MHz频率的无线电定位仪完成定位,卫星可实现全球定位,无线电定位范围通常为几十到几百千米。
由于具有以上特点,抛放式黑匣子不但便于事故后搜寻和打捞,同时可作为传统黑匣子的备份提高数据存活率。
-
黑匣子
+关注
关注
0文章
31浏览量
11211 -
记录器
+关注
关注
0文章
59浏览量
10022 -
航空电子
+关注
关注
15文章
490浏览量
45199
原文标题:一文读懂空难的见证者——“黑匣子”
文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论