0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

马里兰大学物理学家开发了一种强大的新方法来检测放射性物质

MEMS 来源:lp 2019-04-03 16:04 次阅读

马里兰大学物理学家开发了一种强大的新方法来检测放射性物质。利用红外激光束在材料附近诱发电子雪崩击穿现象,这项新技术能够从远处探测到放射性材料,该方法改进了目前需要与放射性物质紧密接触的技术。随着工程技术的进一步进步,这种方法可以扩大规模,用于扫描入境口岸的卡车和集装箱,为检测隐藏的危险放射性物质提供了一个强大新工具。研究人员在2019年3月22日发表在《科学进展》期刊上的一篇研究论文中描述了他们的概念验证实验。

传统检测方法依赖于放射性衰变粒子直接与探测器相互作用,所有这些方法的灵敏度都会随着距离增加而降低。该方法的好处是:它本质上是一个远程过程。随着进一步的发展,它可以从足球场那么远的距离探测到盒子里的放射性物质。当放射性物质释放出衰变粒子时,这些粒子将电子从空气中邻近的原子(或电离原子)中剥离出来,产生少量自由电子,这些电子能迅速附着在氧分子上。通过将红外线激光束聚焦到这个区域,施瓦茨和同事们很容易地将这些电子从氧分子中分离出来。

从而在相对容易探测到的自由电子中播下了雪崩式的快速增长,电子雪崩可以从单个种子电子开始。因为放射源附近空气中含有一些带电荷的氧分子(即使是在屏蔽的容器外)它提供了一个利用强激光场播下雪崩种子的机会。电子雪崩是激光发明后的首批演示之一。这不是一个新现象,但该研究团队是第一个使用红外激光种子雪崩击穿辐射检测。激光的红外波长很重要,因为它可以很容易而且特别地将电子从氧离子中分离出来。在强红外激光场作用下,光束中捕获的自由电子会发生振荡,并与附近的原子发生碰撞。

当这些碰撞变得足够有能量时,它们可以从原子中剥离更多的电子。电子雪崩的一个简单观点是,在一次碰撞后,有两个电子。然后,再来一次,得到四个。然后整个过程级联,直到完全电离为止,在这个过程中,系统中的所有原子都至少有一个电子被移除。当激光路径上的空气开始电离时,它会对反射到探测器上红外光产生可测量的影响。通过跟踪这些变化,施瓦茨、米尔奇伯格和同事能够确定空气何时开始电离,以及达到完全电离需要多长时间。

电离过程的时间,或电子雪崩击穿,给研究人员一个指示,有多少种子电子可以开始雪崩。这一估计反过来可以表明目标中有多少放射性物质。丹尼尔伍德伯里(Daniel Woodbury)说:电离时间是检测初始电子密度最敏感的方法之一,我们使用的是相对较弱的探测激光脉冲,但它是‘啁啾’,这意味着较短波长首先通过雪崩的空气,然后是较长的波长。通过测量通过红外光的光谱成分与反射光谱成分,可以确定电离何时开始并到达终点。研究人员指出,该方法对放射性物质的检测具有高度特异性和敏感性。

马里兰大学(University of Maryland)物理学家开出一种检测放射性物质的新方法,可以扩大到扫描入境口岸的集装箱——这为安全应用提供了一个强大的新工具。图片来源:USDA/APHIS

没有激光脉冲,放射性物质本身不会引起电子雪崩。同样,如果没有放射性物质产生的种子电子,光靠激光脉冲是不会引发雪崩的。虽然该方法目前仍处于概念验证阶段,但研究人员展望了进一步的工程发展,他们希望能使实际应用增强全球入境口岸的安全性。目前使用的是实验室激光器,但在10年左右的时间里,工程师们也许能把这样的系统装进一辆面包车里。无论你在哪里停车,都可以部署这样的系统,这将提供一个非常强大的工具来监控港口活动。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探测器
    +关注

    关注

    14

    文章

    2650

    浏览量

    73151
  • 红外激光
    +关注

    关注

    0

    文章

    30

    浏览量

    7969
  • 放射性物质
    +关注

    关注

    0

    文章

    4

    浏览量

    2293

原文标题:太赫兹探测可远距离探测放射性物质,对人更安全、更高效!

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Litestar 4D:McCree莫克利曲线

    德克萨斯农工大学土壤与作物科学系教授、教育物理学家,发表了题为“作用光谱,吸收和作物的光合作用的量子产率”的开创论文。这项研究同行的评议是关于植物光吸收的最详细的研究之,至今仍被参
    发表于 01-14 09:37

    FlexDDS NG多通道相位连续相干捷变射频源技术资料V1

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下代波形发生器。
    发表于 12-24 13:32 0次下载

    一种降低VIO/VSLAM系统漂移的新方法

    本文提出了一种新方法,通过使用点到平面匹配将VIO/VSLAM系统生成的稀疏3D点云与数字孪生体进行对齐,从而实现精确且全球致的定位,无需视觉数据关联。所提方法为VIO/VSLAM系
    的头像 发表于 12-13 11:18 216次阅读
    <b class='flag-5'>一种</b>降低VIO/VSLAM系统漂移的<b class='flag-5'>新方法</b>

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员直对曲速引擎的概念很感兴趣,这概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收
    的头像 发表于 12-04 09:50 230次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    FlexDDS-NG直接数字信号合成器(DDS)/波形发生器

    盛铂科技FlexDDS-NG是一种单台机箱最多可达12个通道相位连续直接数字信号合成器 (DDS)。其输出频率可达400MHz,该产品专为量子光学研究而设计, 是直接满足实验物理学家需求的下代波形发生器。
    的头像 发表于 11-28 15:00 226次阅读

    一种无透镜成像的新方法

    使用OAM-HHG EUV光束对高度周期结构进行成像的EUV聚光显微镜 为了研究微电子或光子元件中的纳米级图案,一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜。 层析成像是一种
    的头像 发表于 07-19 06:20 425次阅读
    <b class='flag-5'>一种</b>无透镜成像的<b class='flag-5'>新方法</b>

    维也纳大学放射性同位素分析的数量级改进

    (陨石)、考古学和其他领域的分析研究都需要使用长寿命放射性同位素(半衰期较长的放射性核素)确定样品的年龄、来源和其他历史印记。 其中关键的品质因数是同位素比: 同元素的
    的头像 发表于 05-20 06:32 291次阅读
    维也纳<b class='flag-5'>大学</b>: <b class='flag-5'>放射性</b>同位素分析的数量级改进

    基于轨道电润湿的液滴操控技术,有望用于新代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 1859次阅读
    基于轨道电润湿的液滴操控技术,有望用于新<b class='flag-5'>一</b>代数字微流控平台

    使隐形可见:新方法可在室温下探测中红外光

    MIR振动辅助发光(MIRVAL) 来自伯明翰大学和剑桥大学的科学家开发了一种新方法,利用量子
    的头像 发表于 04-19 06:31 342次阅读
    使隐形可见:<b class='flag-5'>新方法</b>可在室温下探测中红外光

    了解几位发明天线的先驱

    1864年左右,苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了无线电理论。
    发表于 03-28 13:54 938次阅读
    了解几位发明天线的先驱

    什么是超快激光?超快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1806次阅读
    什么是超快激光?超快激光的应用有哪些呢?

    电容单位为什么叫法拉?电容器是如何装电、放电的?

    电容单位为什么叫法拉?电容器是如何装电、放电的? 电容单位法拉的由来 电容单位法拉是以英国物理学家迈克尔·法拉第的名字而命名的。法拉第是19世纪最重要的物理学家,他对电磁学的研究做出了重大贡献
    的头像 发表于 02-02 10:08 2593次阅读

    简单介绍电流的单位:安培,安培

    物理学家认为电流从相对正的点流向相对的负点;这称为常规电流或富兰克林电流。
    的头像 发表于 01-30 11:00 3418次阅读

    量子半导体实现拓扑趋肤效应可用于制造微型高精度传感器和放大器

    德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发一种由铝镓砷制成的半导体器件。
    的头像 发表于 01-24 09:48 610次阅读

    拓扑量子器件的突破进展

    1月18日,德累斯顿和维尔茨堡的量子物理学家们取得了显著的科技突破。他们研发出一种半导体器件,其卓越的鲁棒和敏感度得益于一种量子现象——拓扑保护作用,能够免受外部干扰,实现前所未有的
    的头像 发表于 01-23 14:59 611次阅读
    拓扑量子器件的突破<b class='flag-5'>性</b>进展