0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一颗基于应用场景抽象出来的,面向多层神经网络处理的AI芯片

DPVg_AI_era 来源:lp 2019-04-08 10:04 次阅读

今年的春晚都用到了大量的AI技术,在春晚的深圳分会场采用了云天励飞的人脸识别系统,实现刷脸安检1s过关。云天励飞董事长兼CEO陈宁介绍了春晚AI应用背后的黑科技:能够处理200亿城市数据、具备自学能力的AI专用芯片

历年来,央视的春晚都是潮流的风向标,反应了当下最流行的趋势。而2019年春晚的主角,无疑就是人工智能:不仅首次采用AI主持人,幕后也用到了大量的人工智能技术。

我们都知道,春晚安检是一项既重要又累人的活儿。往年依赖人工安检,效率和准确度很难保证,速度慢且易出错。今年春晚的深圳分会场,由于采用了云天励飞的人脸检测系统,来宾可以直接“刷脸”入场,极大的提高了安检的效率。

5个春晚现场的出入口被部署了15台人脸识别闸机,以及6台人证比对一体机,组成了10个通道。同时通过深目系统和摄像头,对现场人员人像信息进行采集、分析、挖掘和“白名单”布控等,为现场演出提供安保服务。经互联网注册、后台验证授权成功的演出人员、工作人员等,全程仅需“刷脸”,1s内即可验证身份,从而得以快速高效通行进入会场。

那么在春晚1s刷脸安检的背后,到底采用了什么技术支持?在实地安装的时候,又会遇到哪些技术和现实的困难?未来会有什么值得期待?这些问题的答案,由云天励飞董事长兼CEO陈宁在3月27日举办的《新智元AI峰会上》一一揭晓。

会上,陈宁介绍了针对平安城市、新零售、社会治理这三个场景,推出的视觉城市大脑系统。据悉,该系统已在北京、上海、深圳、杭州等全国80多个城市和新加坡等一系列海外的国家进行了产业化落地。

作为一家专注于AI场景解决方案的AI芯片初创企业,云天励飞提出了场景定义芯片的概念,并基于应用场景抽象出了一颗面向多层神经网络处理的芯片,以实现对海量数据的高效处理,以及低功耗、高性价比、算法不断演进等诉求。

随着AI芯片开始产业化、商业化的落地应用,背后的信息安全就显得尤为重要。陈宁提到,深圳的视觉城市大脑系统与警民app相连,可以在不到2秒的时间内检索任何一名犯罪嫌疑人,该系统协助公安破获了一万多起各类案例,包括我们开头提到的拐带小孩案件。同时他还提到,公司正在从技术层面配合国家相关部门,推进人工智能立法的调研。

除了AI芯片,陈宁说云天励飞面向AIoT打造了一套AIOS生态平台,将算法、芯片、数据三者相结合,希望在安全性、便利性和愉悦性三个层面逐步改善人类的生活。

以下是陈宁《芯联万物,智创未来》的演讲实录

AI落地应用最大的难点是如何处理多场景海量数据

陈宁(云天励飞董事长兼CEO):过去的五十年,自从个人电脑发明之后,人类数字化生活进入了一个爆发期,尤其是过去的三十年互联网和移动互联网的时代,通过智能手机触摸屏的相应技术,由人类适配机器,通过键盘鼠标进入触摸屏,再进入AIoT的时代,通过视觉和语音的识别大大地降低了人和机器进行交互的门槛,也使更多的人类能够利用这些机器和人工智能的技术。

随之而来的是AI为IoT的时代进行智能化的赋能,随着应用场景的拓展,IoT又为人工智能提供了海量的场景数据,就像人工智能的营养去推动人工智能的算法不断进步,逐步进入一个通用人工智能的时代。

这样一个有机的迭代代表着AIoT时代的启动,而在AIoT时代提供了灵活性数据安全和高性能多方面的一系列诉求,这些海量数据和多场景应用的诉求,为人工智能的芯片提出了一系列挑战。

针对这样面向多场景海量数据的处理,云天励飞也在AI芯片领域作出了一系列探索,提出场景定义AI芯片这样的一个概念。我们认为,AIoT时代将会面向各类场景拥有一系列的专用定制AI芯片的机会。

过去四年多的时间当中,云天励飞尤其是视觉城市大脑领域做了一系列积极的产业化落地探索,我们的视觉大脑主要是在平安城市、新零售、社会治理这三个领域,目前在北京、上海、深圳、杭州等全国80多个城市和新加坡等一系列海外的国家都有产业化的落地。

面向多层神经网络处理的AI芯片,处理200亿城市动态影像

目前系统在线处理的实现了前端装载着我们的算法或者芯片3万多路,已经在系统内处理了超过200多亿的城市级动态影像的数据,这样一系列的场景涵盖了机场、地铁、社区和大型商超、火车站等等各种各样的智慧城市的生活场景,也服务了一系列的重要会议和重要工程。

通过在这些具体的应用场景当中,比如人脸识别、人像识别、海量数据分析等等一系列的应用和系统的理解,我们基于应用场景抽象出了一颗面向多层神经网络处理的芯片。

这颗芯片拥有抽象处理160多条指令,主要是面向多层神经网络的高效可编程抽象出来的自主可控指令集,解决在人工智能芯片应用领域对海量数据的高效处理、对低功耗、高性价比、算法不断演进灵活性等等一系列诉求。

这颗处理器的指令集设计采用SIMD、VLIW以及多线程等等一系列高效率的指令集架构设计的手段,并且为了平衡,海量数据的处理过程当中、数据传输和运算单元之间的平衡也采用进存储计算等一系列较新的架构。

基于这样一颗神经网络的可编程处理器,我们进一步融合CPU和加速单元等等异构架构,设计一系列面向视觉应用基于异构架构和核心的神经网络处理器SOC的芯片。

这样的一系列SOC芯片提供的是面向多应用场景的高度灵活性,比如支持多种数据类型、浮点定点等等多种位宽的数据操作类型,并且兼容目前主流深度学习的框架,支持多套AI算法的应用。

灵活性的基础上同时又不失高效率,面向神经网络的各类运算提供了GPU两个数量级以上的更高性价比,同时面向人工智能算法不断的迭代和演进,也提供了在云端可以一键快速升级终端芯片上的算法,因为是一个可编程,通过软件迭代的方式快速实现软件算法的部署和升级。

第二代芯片也是第一代SOC处理器芯片,因为第一代是在2016年基于FPGA的芯片,DeepEye1000第一代SOC芯片也在2018年8月16号在新加坡投入生产,就是22纳米FD-SOI工艺的SOC异构架构视觉处理芯片,目前这颗芯片也在十多个AIoT应用场景和城市大脑项目当中进行商业化的落地和应用。

我们知道这样的一系列AI芯片的背后其实信息安全就更加重要,因为原来散落在城市的各个角落海量的视频监控数据,因为缺乏AI的技术手段,所以这些数据当中有用的价值很难被挖掘出来,但是由于现在我们赋予其AI算法、芯片和数据分析的能力,可以在我们的指间方寸秒级获取必要有用的信息。

我们在深圳上线了一套视觉城市大脑系统,2017年开始深圳的两万民警在警民终端的APP上面可以在秒级时间对城市级的视频监控数据进行分析,大概不到两秒的时间通过这款APP可以检索任何一名犯罪嫌疑人,当然有严格的权限管理,深圳的机场到地铁,南山福田跨区域过去半年的活动轨迹,这套系统也协助公安破获了一万多起各类案例。

AI芯片数据安全正在向自演进、自学习的目标发展

这是视觉城市大脑在平安城市应用的案例,但是随着颠覆性实战效果的背后,当然对信息安全、个人隐私也提出了一系列的挑战。除了一系列SOC芯片在终端应用和云端,芯片数据管理技术的角度提出了一系列的挑战之外,制度法律法规层面我们也在配合国家相关部门推进一些人工智能立法的调研。

基于芯片数据安全,我们知道人工智能其实还是处于一个非常早期的阶段,正在从一个弱人工智能时代向一个自演进、自学习的目标进行演进。

基于这样一个芯片的硬件平台,我们打造了AIOS。这是能够从数据的采集、标注、训练到算法的升级,能够实现芯片、算法、数据有机的迭代,推动面向应用场景的算法不断进行自演进,甚至在终端芯片上进行分布式的自训练。

结合异构架构的底层芯片和AIOS操作系统打造这样一个面向AIoT的芯片+算法训练平台的生态,再结合我们在大数据领域城市大脑应用的数据分析领域,将算法、芯片、数据三者相结合,推动再向无人驾驶机器人、安防、智能制造等等一系列领域逐步打造这样一个AIoT的生态,推动人工智能逐步成熟、逐步产业化落地,安全、便利和愉悦三个层面逐步改善人类的生活。

这些就是今天我带给大家的分享,谢谢!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4765

    浏览量

    100573
  • 人脸识别
    +关注

    关注

    76

    文章

    4007

    浏览量

    81784
  • AI芯片
    +关注

    关注

    17

    文章

    1861

    浏览量

    34924

原文标题:能处理200多亿城市数据,这款AI芯片具备自主学习能力

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何构建多层神经网络

    构建多层神经网络(MLP, Multi-Layer Perceptron)模型是个在机器学习和深度学习领域广泛使用的技术,尤其在处理分类和回归问题时。在本文中,我们将深入探讨如何从头
    的头像 发表于 07-19 17:19 731次阅读

    多层感知机与神经网络的区别

    多层感知机(Multilayer Perceptron, MLP)与神经网络之间的区别,实际上在定程度上是特殊与般的关系。多层感知机是
    的头像 发表于 07-11 17:23 1637次阅读

    卷积神经网络的应用场景及优缺点

    卷积神经网络(Convolutional Neural Networks,简称CNNs)是种深度学习架构,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。 、卷积
    的头像 发表于 07-11 14:45 585次阅读

    递归神经网络与循环神经网络样吗

    时具有各自的优势和特点。本文将介绍递归神经网络和循环神经网络的概念、结构、工作原理、优缺点以及应用场景。 递归神经网络(Recursive Neural Network,RvNN) 1
    的头像 发表于 07-05 09:28 717次阅读

    递归神经网络的结构、特点、优缺点及适用场景

    识别、时间序列分析等领域有着广泛的应用。本文将详细介绍递归神经网络的结构、特点、优缺点以及适用场景、递归神经网络的结构 基本结构 递归神经网络
    的头像 发表于 07-04 14:52 1112次阅读

    循环神经网络的应用场景有哪些

    循环神经网络(Recurrent Neural Network,简称RNN)是种具有记忆功能的神经网络,能够处理序列数据,广泛应用于自然语言处理
    的头像 发表于 07-04 14:39 1140次阅读

    卷积神经网络和bp神经网络的区别在哪

    结构、原理、应用场景等方面都存在定的差异。以下是对这两种神经网络的详细比较: 基本结构 BP神经网络
    的头像 发表于 07-04 09:49 9180次阅读

    神经网络芯片和普通芯片区别

    处理神经网络算法的芯片。它通过模拟人脑神经元的工作方式,实现了对大量数据的并行处理和快速学习。 普通芯片
    的头像 发表于 07-04 09:30 930次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络
    的头像 发表于 07-03 10:12 1054次阅读

    神经网络算法的结构有哪些类型

    神经网络算法是深度学习的基础,它们在许多领域都有广泛的应用,如图像识别、自然语言处理、语音识别等。神经网络的结构有很多种类型,每种类型都有其独特的特点和应用场景。以下是对
    的头像 发表于 07-03 09:50 392次阅读

    卷积神经网络训练的是什么

    、训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络种前馈深度学习模型,其核心思想是利用卷积
    的头像 发表于 07-03 09:15 354次阅读

    卷积神经网络的原理是什么

    基本概念、结构、训练过程以及应用场景。 卷积神经网络的基本概念 1.1 神经网络 神经网络种受人脑
    的头像 发表于 07-02 14:44 575次阅读

    神经网络反向传播算法原理是什么

    介绍反向传播算法的原理、数学基础、实现步骤和应用场景神经网络简介 神经网络种受人脑启发的计算模型,由大量的神经元(或称为节点)组成。
    的头像 发表于 07-02 14:16 525次阅读

    神经网络模型的原理、类型、应用场景及优缺点

    神经网络模型是种基于人工神经元的数学模型,用于模拟人脑的神经网络结构和功能。神经网络模型在许多领域都有广泛的应用,包括图像识别、语音识别、
    的头像 发表于 07-02 09:56 1119次阅读

    NanoEdge AI的技术原理、应用场景及优势

    能耗并提高数据安全性。本文将对 NanoEdge AI 的技术原理、应用场景以及优势进行综述。 1、技术原理 NanoEdge AI 的核心技术包括边缘计算、神经网络压缩和低功耗硬
    发表于 03-12 08:09