大家都知道面对癌症要及早发现及早治疗,但过小的肿瘤难以发现,当肿瘤大到能发现时,或许早已错过治疗的最佳时间,为时已晚。最近美国麻省理工学院(Massachusetts Institute of Technology,MIT)的研究人员开发出新的光学成像系统「海豚」(DOLPHIN),可检测出在体内深处的微小肿瘤。
现今仪器多会在医学影像成像的深度和解析度间取舍,比如磁共振成像(Magnetic Resonance Imaging,MRI)和计算机断层扫描(Computed Tomography,CT)可看到贯穿整个身体的影像,但无法看到小于 1 厘米的肿瘤;光学成像技术则可看到较小肿瘤,但仅能看到距离体表约 3 厘米的深度。
图片来源:MIT
新研究中,研究人员试图将影像深度和解析度都做到最好。近红外光与其他光学方法相比有较长的波长,可穿透人体较深的部位并得到较高分辨率,新方法利用高光谱影像(hyperspectral imaging)一次成像多重近红外光。
研究人员在体外搜集讯号,接着利用团队开发的算法分析探测器接收讯号的位置和深度。研究团队称这种方法为「利用高光谱影像和近红外光漫射进行的冷光探测」(Detection of Optically Luminescent Probes using Hyperspectral and diffuse Imaging in Near-infrared,DOLPHIN)。
团队利用带有不同奈米粒子的探测器来测试 DOLPHIN 系统(不同奈米粒子会放出不同波长的近红外光),之后让小鼠吞下探测器并追踪探测器在消化系统的位置。此方法特别之处在于这种探测器仅 0.1 毫米长,远小于一般光学成像常用的探测器。
在另一项试验中,注射到大鼠和小鼠体内的探测器可以侦测到约 4 厘米的深度,当在动物组织和拟人体组织的样本进行试验时,最大深度可以达到原本 2 倍。
就现况而言,这仅是个概念,知道利用 DOLPHIN 系统能使微小且位置较深的物体留在人体中成像。研究人员正在调整探测器,使它能寻找并标记肿瘤,让肿瘤发出荧光。
研究团队将首要目标放在卵巢癌,因被发现时常是末期,难以治疗。胰脏癌、脑癌、皮肤癌也是研究人员瞄准的目标,研究共同作者 Neelkanth Bardhan 教授表示:「就实际应用而言,这项技术使我们能以无创的方式追踪 0.1 毫米大小的荧光标记肿瘤,而这是由数百个细胞组成的细胞团。据我们所知,目前尚未有其他人能利用光学技术做到这件事。」
新研究发表在《科学报告》(Scientific Reports)期刊。
-
MIT
+关注
关注
3文章
253浏览量
23529 -
光学成像
+关注
关注
0文章
87浏览量
10159 -
癌症
+关注
关注
0文章
16浏览量
4147
发布评论请先 登录
相关推荐
新型超分辨显微成像技术:突破光学衍射极限
![新型超分辨显微<b class='flag-5'>成像</b><b class='flag-5'>技术</b>:突破<b class='flag-5'>光学</b>衍射极限](https://file1.elecfans.com//web3/M00/02/FF/wKgZO2djSsyAcWtFAAQfEayXrY0790.jpg)
LG AI Research使用亚马逊云科技开发AI模型 加快癌症诊断速度
![LG AI Research使用亚马逊云科技<b class='flag-5'>开发</b>AI模型 加快<b class='flag-5'>癌症</b>诊断速度](https://file1.elecfans.com//web3/M00/02/80/wKgZO2df0yuAGrTwAABkKWhp4aE739.jpg)
光学成像的关键技术和工艺
![<b class='flag-5'>光学成像</b>的关键<b class='flag-5'>技术</b>和工艺](https://file1.elecfans.com//web2/M00/0B/87/wKgaomckA7-AZkseAAVFHNdD5N8040.png)
光学透过率测量仪的技术原理和应用场景
研究人员利用人工智能提升超透镜相机的图像质量
![<b class='flag-5'>研究人员</b>利用人工智能提升超透镜相机的图像质量](https://file1.elecfans.com//web2/M00/EC/96/wKgZomZnf4WANY8LAAOx39ohSPY736.jpg)
MIT/三星研究人员利用活体拉曼光谱直接观察葡萄糖指纹图谱
![<b class='flag-5'>MIT</b>/三星<b class='flag-5'>研究人员</b>利用活体拉曼光谱直接观察葡萄糖指纹图谱](https://file1.elecfans.com//web2/M00/EC/A9/wKgaomZflreADUwuAAE2PX44Emg333.png)
使用光子纠缠的自适应光学成像
![使用光子纠缠的自适应<b class='flag-5'>光学成像</b>](https://file1.elecfans.com//web2/M00/D5/CE/wKgZomYm5ZyAOsxmAAJN30cVqno790.png)
基于光子纠缠的自适应光学成像技术应用
![基于光子纠缠的自适应<b class='flag-5'>光学成像</b><b class='flag-5'>技术</b>应用](https://file1.elecfans.com/web2/M00/C4/A3/wKgaomXuexGAWm_IAAAd9JUkDNU338.png)
评论