0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

分析深度学习技术现状,研判深度学习发展趋势

mK5P_AItists 来源:lp 2019-04-13 11:06 次阅读

当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。

一、深度学习技术现状

深度学习是本轮人工智能爆发的关键技术。人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。

深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。

深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网络是两类获得广泛应用的深度神经网络模型。计算机视觉和自然语言处理是人工智能两大基础应用。卷积神经网络广泛应用于计算机视觉领域,在图像分类、目标检测、语义分割等任务上的表现大大超越传统方法。循环神经网络适合解决序列信息相关问题,已广泛应用于自然语言处理领域,如语音识别、机器翻译、对话系统等。

深度学习技术仍不完美,有待于进一步提升。一是深度神经网络的模型复杂度高,巨量的参数导致模型尺寸大,难以部署到移动终端设备。二是模型训练所需的数据量大,而训练数据样本获取、标注成本高,有些场景样本难以获取。三是应用门槛高,算法建模及调参过程复杂繁琐、算法设计周期长、系统实施维护困难。四是缺乏因果推理能力,图灵奖得主、贝叶斯网络之父JudeaPearl指出当前的深度学习不过只是“曲线拟合”。五是存在可解释性问题,由于内部的参数共享和复杂的特征抽取与组合,很难解释模型到底学习到了什么,但出于安全性考虑以及伦理和法律的需要,算法的可解释性又是十分必要的。因此,深度学习仍需解决以上问题。

二、深度学习发展趋势

深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。神经网络的层数已扩展到上百层甚至上千层,随着网络层数的不断加深,其学习效果也越来越好,2015年微软提出的ResNet以152层的网络深度在图像分类任务上准确率首次超过人眼。新的网络设计结构不断被提出,使得神经网络的结构越来越复杂。如:2014年谷歌提出了Inception网络结构、2015年微软提出了残差网络结构、2016年黄高等人提出了密集连接网络结构,这些网络结构设计不断提升了深度神经网络的性能。

深度神经网络节点功能不断丰富。为了克服目前神经网络存在的局限性,业界探索并提出了新型神经网络节点,使得神经网络的功能越来越丰富。2017年,杰弗里•辛顿提出了胶囊网络的概念,采用胶囊作为网络节点,理论上更接近人脑的行为,旨在克服卷积神经网络没有空间分层和推理能力等局限性。2018年,DeepMind、谷歌大脑、MIT的学者联合提出了图网络的概念,定义了一类新的模块,具有关系归纳偏置功能,旨在赋予深度学习因果推理的能力。

深度神经网络工程化应用技术不断深化。深度神经网络模型大都具有上亿的参数量和数百兆的占用空间,运算量大,难以部署到智能手机、摄像头和可穿戴设备等性能和资源受限的终端类设备。为了解决这个问题,业界采用模型压缩技术降低模型参数量和尺寸,减少运算量。目前采用的模型压缩方法包括对已训练好的模型做修剪(如剪枝、权值共享和量化等)和设计更精细的模型(如MobileNet等)两类。深度学习算法建模及调参过程繁琐,应用门槛高。为了降低深度学习的应用门槛,业界提出了自动化机器学习(AutoML)技术,可实现深度神经网络的自动化设计,简化使用流程。

深度学习与多种机器学习技术不断融合发展。深度学习与强化学习融合发展诞生的深度强化学习技术,结合了深度学习的感知能力和强化学习的决策能力,克服了强化学习只适用于状态为离散且低维的缺陷,可直接从高维原始数据学习控制策略。为了降低深度神经网络模型训练所需的数据量,业界引入了迁移学习的思想,从而诞生了深度迁移学习技术。迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。通过将训练好的模型迁移到类似场景,实现只需少量的训练数据就可以达到较好的效果。

三、未来发展建议

加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。在深度强化学习方面,目前最新的研究成果大都是由DeepMind和OpenAI等国外公司的研究人员提出,我国尚没有突破性研究成果。近几年的研究热点生成式对抗网络(GAN)是由美国的研究人员Goodfellow提出,并且谷歌、facebook、twitter和苹果等公司纷纷提出了各种改进和应用模型,有力推动了GAN技术的发展,而我国在这方面取得的研究成果较少。因此,应鼓励科研院所及企业加强深度神经网络与因果推理模型结合、生成式对抗网络以及深度强化学习等前沿技术的研究,提出更多原创性研究成果,增强全球学术研究影响力。

加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4765

    浏览量

    100549
  • 人工智能
    +关注

    关注

    1791

    文章

    46877

    浏览量

    237614
  • 深度学习
    +关注

    关注

    73

    文章

    5493

    浏览量

    120983

原文标题:深度学习技术发展趋势浅析

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为
    的头像 发表于 11-14 15:17 318次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 331次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术发展 深度
    的头像 发表于 10-27 10:57 302次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 383次阅读

    FPGA做深度学习能走多远?

    ,进一步降低了总体成本。 • 发展趋势和潜力: • 与其他技术的融合:未来,FPGA 可能会与其他技术(如 CPU、GPU、ASIC 等)进行更紧密的融合,形成异构计算平台,以充分发挥各种技术
    发表于 09-27 20:53

    深度学习模型有哪些应用场景

    深度学习模型作为人工智能领域的重要分支,已经在多个应用场景中展现出其巨大的潜力和价值。这些应用不仅改变了我们的日常生活,还推动了科技进步和产业升级。以下将详细探讨深度学习模型的20个主
    的头像 发表于 07-16 18:25 1711次阅读

    深度学习算法在嵌入式平台上的部署

    随着人工智能技术的飞速发展深度学习算法在各个领域的应用日益广泛。然而,将深度学习算法部署到资源
    的头像 发表于 07-15 10:03 1193次阅读

    深度学习算法在集成电路测试中的应用

    随着半导体技术的快速发展,集成电路(IC)的复杂性和集成度不断提高,对测试技术的要求也日益增加。深度学习算法作为一种强大的数据处理和模式识别
    的头像 发表于 07-15 09:48 795次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随着深度
    的头像 发表于 07-09 15:54 713次阅读

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的无监督
    的头像 发表于 07-09 10:50 518次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经
    的头像 发表于 07-04 17:25 753次阅读

    深度学习与卷积神经网络的应用

    到自然语言处理,深度学习和CNN正逐步改变着我们的生活方式。本文将深入探讨深度学习与卷积神经网络的基本概念、工作原理及其在多个领域的应用,并展望其未来的
    的头像 发表于 07-02 18:19 814次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1201次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1242次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 596次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?