0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人能够学习自我模仿,机器人自主时代的开始了?

jmiy_worldofai 来源:YXQ 2019-04-16 16:37 次阅读

动物们在田野上驰骋、在树上灵巧地攀爬、在跌倒之前迅速站稳脚跟。

和我们的灵长类表亲一样,人类也可以运用拇指和精细的运动技能来完成一些任务,比如毫不费力地剥开柑橘皮,或者在黑暗的走廊里寻找正确的钥匙。

虽然行走和抓取对许多生物来说是小菜一碟,但机器人在步态移动和灵巧性方面一直不尽人意。

如今,Hwangbo等人在Science Robotics杂志上撰文,报告证明了这样了一件有趣的事:某种机器人软件设计方法需要数据驱动,而这种方法正好能够克服机器人和人工智能研究领域中长期存在的一个挑战,即模拟与现实之间的差距。

几十年来,机器人专家在预测性数学模型(称为经典控制理论)基础上建立软件,以此来引导机器人肢体的行动。然而,这种方法在引导机器人肢体完成行走、攀爬和抓取这些看似简单的问题上却无效。

机器人通常在模拟中开始它的生命。当它的引导软件在虚拟世界中表现良好时,该软件就会被放置在机器人体内,然后随机器人一起进入现实世界。

在现实世界里,机器人难免会不断地遇到难以预测的状况,包括表面摩擦、结构灵活性、振动、传感器延迟以及具有时差的执行器,一般执行器将能量转化为运动指令。

不幸的是,这些状况是不可能事先由数学运算详尽描述的。因此,即使是在模拟中表现出色的机器人,遇到一些看似微小的物理障碍后也会磕磕绊绊,甚至摔倒。

Hwangbo等人将经典控制理论与机器学习技术相结合,研究出一种缩小类似差距的方法。

首先,该团队设计了一个中型四足机器人的传统数学模型,名为ANYmal(如上图)。

接下来,他们从引导机器人肢体运动的执行器中收集数据。

然后,他们将收集的数据输入被称为神经网络的机器学习系统中,建立第二个模型,而这个模型可以自动预测AMYmal机器人肢体的特殊运动。

最后,该团队将训练好的神经网络插入第一个模型中,并在标准台式计算机上运行混合模型。

混合模拟器比基于分析模型的模拟器速度更快,精准度更高。更重要的是,机器人的运动在混合模拟器中优化之后,转移进机器人体内,并连入现实世界,这时,机器人在现实世界的行动就像在模拟器里一样成功。

这个姗姗来迟的突破终结了看似不可逾越的模拟与现实鸿沟。

Hwangbo等人使用的方法还暗示了机器人领域的另一个重大转变。

混合模型的出现是这一重大转变的第一步。下一步将是彻底淘汰分析模型,取而代之的是机器学习模型,这种模型将由机器人在现实环境中所收集的数据进行训练。

目前,这种称为端到端培训的纯数据方法发展势头迅猛。媒体已报道了一些创新的应用,包括铰接式机器人手臂、多指机械手、无人机,甚至自动驾驶汽车。

机器人专家仍在钻研如何强化计算速度、丰富传感器数据以及提高机器学习算法质量。目前尚不清楚大学是否应该停止教授经典控制理论。

然而,笔者认为这是一个不祥之兆:未来的机器人的行走不再依赖专家,相反,他们可以利用自己身体里的数据进行学习。

当然,不少挑战仍然存在,其中最主要的是可扩展性的挑战。

到目前为止,端到端培训机制仅应用于只有少量执行器的物理机器人之上。执行器越少,描述机器人运动所需的参数就越少,模型就越简单。实现可扩展性的途径可能包括使用更多层次和模块化的机器学习架构。

想要知道端到端控制是否可以扩大到引导拥有数十个执行器的复杂机器,包括人形机器人,以及诸如制造工厂或智能城市(使用数字技术改善市民生活的城市地区)等大型系统,还需要做进一步研究。

另一个挑战是低技术性,高个性化。

对一些研究人员来说,从使用相对简单的数学模型到应用“潘多拉盒子”机器学习系统(其中的内部工作原理未知)的转变,标志着洞察力悄然退场,失控感油然而生。对我来说,看到机器人像孩子一样学会自己走路让我感到心满意足。

Hwangbo等人提出的见解也可以从心灵之谜的角度来考虑。意识一直是人类本性中最古老的谜题之一。

人类对自我意识的定义十分模糊。然而,人们对机器人软件的研究可以让我们深入了解关于人类思维的古老问题。

我们可以推测,自我意识以及由此延伸出来的意识,其核心是我们抽象思考自己的能力的一种表现,即自我模仿。一个人能看得越远,他对未来展望的心理图景就越详细,自我意识能力就越强。

现在,机器人能够学习自我模拟。这一突破不仅实用,可以减轻一些工程的负担,而且,它标志着机器人自主时代的开始。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28632

    浏览量

    207979
  • AI
    AI
    +关注

    关注

    87

    文章

    31490

    浏览量

    269883

原文标题:机器人开始自主学习,是人类福祉,还是定时炸弹?

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得之具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有全新认识。第10章从实时性角度剖析机器人计算加速问题。
    发表于 01-04 01:15

    开源项目!能够精确地行走、跳舞和执行复杂动作的机器人—Tillu

    设计的激动人心的机器人项目。它不仅适合个人使用,还为教学和探索提供丰富的学习体验。无论你是初学者还是专业人士,Tillu都能为你打开机器人世界的大门。 项目作者:Mukesh_Sa
    发表于 01-02 17:24

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    的设计不仅提高了机器人对环境的理解能力,还使其能够更精准地执行复杂任务。 扩散模型的新思路 除了大模型,扩散模型的引入为机器人控制开辟新的研究方向。在以UniPi为代表的创新工作中,
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    重要。 书中还详细介绍支持具身智能机器人的核心技术系统,包括自主机器人计算系统、感知系统、定位系统及规划和控制系统。 本书共分5个部分。 第1部分(第1章和第2章)介绍具身智能机器人
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    简单的具身智能机器人的应用案例。具体目录如下: 第一章学习 具身智能机器人是指能够在无人工干预下自主执行任务的
    发表于 12-27 14:50

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    和经验积累,使机器人能够自主发现工艺规律,优化作业参数。家庭服务机器人则采用混合任务规划策略:将预训练的基础技能与实时规划相结合,灵活应对开放环境中的各种情况。 第9章深入探讨了元
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    【「具身智能机器人系统」阅读体验】+初品的体验

    提高机器人的自适应性和自主性,赋能机器人在多种场景中的应用。例如在家庭自动化领域,具身智能机器人能够感知家庭成员的日常习惯和需求,自动执行清
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    物理交互纳入智能系统的核心要素。 第3章是探讨机器人计算系统。这一章节详细阐述自主机器人的软硬件架构。计算系统需要满足机器人任务对算法的精度、实时性和功耗要求。书中介绍的多传感器融合
    发表于 12-19 22:26

    鸿蒙机器人与鸿蒙开发板联动演示

    鸿蒙机器人与鸿蒙开发板联动演示,机器人的角色为迎宾机器人,开发板负责人宾客出现监听
    发表于 12-02 14:55

    机器人技术的发展趋势

    机器人技术的发展趋势呈现出多元化、智能化和广泛应用的特点。 一、智能化与自主化 人工智能(AI)与机器学习 : AI和机器
    的头像 发表于 10-25 09:27 1241次阅读

    柔性机器人与刚性机器人区别与联系

    柔性机器人和刚性机器人在结构、功能、应用场景等方面存在显著的区别,但也有一些联系。以下是它们的主要区别与联系: 区别 1.结构材料 柔性机器人:由柔性材料(如硅胶、弹性体、智能材料等)制成,
    的头像 发表于 07-21 15:37 683次阅读
    柔性<b class='flag-5'>机器人</b>与刚性<b class='flag-5'>机器人</b>区别与联系

    Al大模型机器人

    丰富的知识储备。它们可以涵盖各种领域的知识,并能够回答相关问题。灵活性与通用性: AI大模型机器人具有很强的灵活性和通用性,能够处理各种类型的任务和问题。持续学习和改进: 这些模型可以
    发表于 07-05 08:52

    基于FPGA EtherCAT的六自由度机器人视觉伺服控制设计

    ,在 PS层运行 苏姆的裸机程序, 并将六自由度串联机器人逆解算法移植到主站代码里,进行机器人末端位置对于视觉反馈的实时跟随控制。 (4)通过实验验证本设计的对物块识别的准确性和实时性,并使用
    发表于 05-29 16:17