0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习、CNN越来越火热,这种热度能够持续多久?

DPVg_AI_era 来源:lp 2019-05-01 09:06 次阅读

本文介绍了LeCun和居里夫人、以及原子发展和AI发展的共通之处,试图回答:人工智能处于何种发展阶段、是否会有危险、以及YannLeCun是新的RichardFeymann,还是新的MarieCurie,或两者兼而有之?

深度学习、CNN越来越火热,原因之一是它取得了很多令人瞩目的成就。不过,这种热度能够持续多久?深度学习是否在未来几年仍然能够推动人工智能呈指数级增长?恐怕需要我们仔细去思考一下。

美国未来研究院主席罗伊·阿马拉有一条著名的阿马拉定律:“我们倾向于过高估计技术在短期内的影响,而低估它的长期效应”。

所以,深度学习到底是被高估还是低估,就得搞清楚目前深度学习和人工智能发展到了什么程度,站在哪个阶段上。

Gartner热度循环曲线

上图中的曲线反应了一项技术在5到10年内关注度的变化,可供企业用来评估该项技术的发展阶段,从而决定是否采用该技术、何时使用等。不过人工智能不仅仅是一项应用于企业的技术,同时是一个独立的科学领域,它的热度周期可能长达50到100。

观察人工智能发展走向的一种方法是将其看做是人类对自我认知的理解,对人类学习系统的探索。从这个角度切入,就可以将我们在人工智能领域的发现,与过去的科学发现进行比较,特别是那些与复杂系统有关的发现:太阳系,进化,电力…以及,原子。

接下来,我们来通过解答一个有趣的问题来尝试揭开当前人工智能的发展阶段,以及30年后我们的后代回顾历史会对现在我们做的事情做出何种评价:天真?还是危险?

这个问题就是:深度学习大牛、CNN之父YannLeCun是AI领域的费曼,还是居里夫人,或两者兼而有之?

核物理简史

要解答上述问题,需要对核物理的历史做一个简单的梳理。

研究铀盐磷光现象的Becquerel于1897年偶然发现了铀的放射性,铀被光照后拥有了发射X射线的能力,接着他很快就发现铀不需要外部能源也能发射X射线。之后居里夫人更精心地研究了放射性,并研究了除铀以外的其他天然放射性化合物。

放射性的发现引起了公众的热情;与此同时,放射性是一种新的现象,需要通过理论研究和对原子本身的更好理解来解释。

爱因斯坦在1905年提出了著名的质能等价理论,卢瑟福在几年后通过实验用电子轰击金属板,确定了原子的第一个模型:有核和电子轨道。

这个不完整的原子模型一直沿用了15年。直到1928年现代普遍接受的“自旋”模型的出现,以及1935年强核力理论的提出。

在强核力理论提出4年后,放射性元素第一次落地应用,科学家使用同位素成功进行了癌症化疗;随后,1942年建立了第一个研究核反应堆,1956年建成第一座全规模核能发电厂。

从1897年发现发射线元素,到成功实现落地应用,历时近半个世纪。

人工神经网络是如何开始的

神经网络的概念很早就有了,最初的动机是编写一种模仿突触行为的算法。在1957年讨论了第一个感知器,1965年讨论了第一个多层感知器。

而那个时候的计算机刚刚开始发展,速度非常慢,最简单的网络也得数天才能训练完毕,效率极其低下,因此在接下来的十几年都没有被大量使用。

第一个转机出现在1974年,Werbos发现了反向传播。反向传播使用了神经网络操作具有差异性和可投射性的特点,当网络出错时,可以将错误本身回溯到网络的各层,以帮助它自我纠正。从某种意义上说,它是我们今天称之为深度学习的开始。

几年后,KunihikoFukushima推出了Neocognitron,灵感来自视觉皮层中感知细胞的工作模式。有了Neocognitron,才有了后来广为人知的CNN。

神经网络的重大发展,源自算力的提升,这要感谢现代GPU、TPU等。

YannLeCun:让人工智能看到了一束光

在YannLeCun将神经网络第一次落地之前,AI正在经历漫长的寒冬期。

YannLeCun通过反向传播和CNN来识别用于邮件路由的邮件上的邮政编码,虽然结果喜人,然而距离深度学习成为主流还需要20年左右的时间。

三个G:Google,GAN和GPU

2014年,IanGoodfellow与蒙特利尔大学的同事们在酒吧里激烈争吵。有关自动生成逼真图像的能力以及如何教导神经网络做到这一点。喝大了的Ian诞生了一个疯狂想法,让两个神经网络互殴,第一个网络生成图像,第二个网络“调教”第一个。

现在仍然不清为什么让两个神经网络并行运行会有效,这个问题仍然亟待解决。GAN是过去几年出现的有关机器学习的一个例子,但其他包括:

学习(可解释以及好奇心)人工智能系统本身缺乏好奇心,不会学到新东西,缺乏可解释性

深度双重Q-Learning(DDQN),深度学习网络尝试去学会一个策略(例如,玩AtariPong)。两个网络分别评估特定步骤是否智能和相互关联的结果

YOLO(You Look Only Once)对象检测算法,以奇怪的方式检测图像中的对象,但速度超快

回顾有关人工智能的各种概念的提出,例如反向传播、CNN、GAN,RNN,LTSM等,可以和原子的发展历程进行类比。

Atom和DeepLearning/AI

30年后的人工智能

未来很难预测,不过可以通过根据过去的科学发现,尝试做出一些假设,并找出真正在AI上取得重大进展需要做些什么:

更多理论:人工智能现在阶段,类似自旋模型出现之前的阶段。

也许未来可能建立一个适用的学习理论,其中包含驱动因素(如好奇心,概括能力等),并将这些概念融合在一起

更多工业化:工程领域需要通用以及可重用的组件。这一点已经从核工业中得到证实。在深度学习中,嵌入和可重用的表示正在成为一种趋势

更多落地商用:人工智能目前主要在虚拟世界、而非真实世界中运行,这限制了它的一些实际应用。一些新出现的概念,例如“数字孪生工厂”,人工智能可以在其上运行并进行优化的见解

更多硬件:放射性是在建造静电计的时候偶然发现的。而AI是在当前硬件(包括GPU和TPU)上开发的,所以,未来可能需要量子计算机

如果至少上述任何两个“预测”都成为现实,30年后当我们的后代回顾21世纪初的深度学习研究领域是,可能会说:是的,也许YannLeCun是AI领域的居里夫人!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47436

    浏览量

    238978
  • 深度学习
    +关注

    关注

    73

    文章

    5508

    浏览量

    121295
  • cnn
    cnn
    +关注

    关注

    3

    文章

    353

    浏览量

    22251

原文标题:Yan LeCun会是AI界的居里夫人吗?

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理器,它与传统的CPU和GPU有所不同。NPU通常具有高度并行的处理能
    的头像 发表于 11-14 15:17 695次阅读

    我们的城市为什么越来越热?

    全球气候在变暖,我们焚烧石油,煤炭等化石燃料,产生了大量二氧化碳等温室气体,导致全球气候变暖,尤其大陆气温升高,城市变得越来越热。图:上海前滩的夜晚,被太阳晒热的建筑热岛效应夏天天太热,在阳光
    的头像 发表于 08-03 08:14 572次阅读
    我们的城市为什么<b class='flag-5'>越来越</b>热?

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的
    的头像 发表于 07-09 10:50 828次阅读

    CNN在多个领域中的应用

    ,通过多层次的非线性变换,能够捕捉到数据中的隐藏特征;而卷积神经网络(CNN),作为神经网络的一种特殊形式,更是在图像识别、视频处理等领域展现出了卓越的性能。本文旨在深入探究深度学习
    的头像 发表于 07-08 10:44 2011次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 949次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键技术、常见网络架构以及实际应用案例。
    的头像 发表于 07-03 09:28 646次阅读

    cnn卷积神经网络三大特点是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。CNN具有以下三大特点: 局
    的头像 发表于 07-03 09:26 1412次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
    的头像 发表于 07-02 18:19 932次阅读

    卷积神经网络cnn模型有哪些

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 CNN的基本概念 1.1
    的头像 发表于 07-02 15:24 746次阅读

    深度神经网络模型cnn的基本概念、结构及原理

    深度神经网络模型CNN(Convolutional Neural Network)是一种广泛应用于图像识别、视频分析和自然语言处理等领域的深度学习模型。 引言
    的头像 发表于 07-02 10:11 9785次阅读

    基于Python和深度学习CNN原理详解

    卷积神经网络 (CNN) 由各种类型的层组成,这些层协同工作以从输入数据中学习分层表示。每个层在整体架构中都发挥着独特的作用。
    的头像 发表于 04-06 05:51 2187次阅读
    基于Python和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>CNN</b>原理详解

    嵌入式会越来越卷吗?

    以及大数据处理等技术之间的整合与互动可能会越来越密切。这种融合或许会带来更强大的系统和更广泛的应用,但也会带来新的挑战,如数据安全性和系统稳定性等问题。 嵌入式系统的“卷”涵盖了技术、应用和发展等多方面
    发表于 03-18 16:41

    我们该如何应对SOC中越来越庞大和复杂的SDC约束?

    SOC设计变得越来越复杂,成本越来越高,设计和验证也越来越困难。
    的头像 发表于 03-13 14:52 1213次阅读
    我们该如何应对SOC中<b class='flag-5'>越来越</b>庞大和复杂的SDC约束?

    IC datasheet为什么越来越薄了?

    刚毕业的时候IC spec动则三四百页甚至一千页,这种设置和使用方法很详尽,但是这几年IC datasheet为什么越来越薄了,还分成了IC功能介绍、code设置、工厂量产等等规格书,很多东西都藏着掖着,想了解个IC什么东西都要发邮件给供应商,大家有知道这事为什么的吗?
    发表于 03-06 13:55

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过深度学习解决若干问题的案例
    的头像 发表于 01-11 10:51 2212次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用