0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络四种卷积类型

Dbwd_Imgtec 来源:lp 2019-04-19 16:48 次阅读

使用内核大小为3,步长为1和填充的2D卷积

一般卷积

首先,我们需要就定义卷积层的一些参数达成一致。

卷积核大小(KernelSize):卷积核定义了卷积的大小范围,二维卷积核最常见的就是3*3的卷积核。

步长(Stride):步长定义了当卷积核在图像上面进行卷积操作的时候,每次卷积跨越的长度。在默认情况下,步长通常为1,但我们也可以采用步长是2的下采样过程,类似于MaxPooling操作。

填充(Padding):卷积层采用一定数量的输入通道(I),并且设计特定数量的输出通道(O)。每一层所需的参数可以通过I*O*K来进行计算,其中K等于卷积核的数量。

输入和输出管道(Input&OutputChannels):卷积层采用一定数量的输入通道

扩张的卷积

使用3内核进行2D卷积,扩展率为2且无填充

扩张的卷积为卷积层引入另一个参数,称为扩张率。这定义了卷积核中值之间的间距。扩张率为2的3x3内核与5x5内核具有相同的视野,而仅使用9个参数。想象一下,获取一个5x5内核并删除每一个第二列和第二行(间隔删除),就是我们介绍的卷积。

这以相同的计算成本提供了更宽的视野。扩张卷积在实时分割领域中特别受欢迎。如果您需要广泛的视野并且无法承受多个卷积或更大的核,请使用它们。

转置卷积

(又称解卷积或分数跨度卷积)

有些消息来源使用名称deconvolution,这是不合适的,因为它不是解卷积。为了使事情更糟,确实存在解卷积,但它们在深度学习领域并不常见。实际的反卷积会使卷积过程恢复。想象一下,将图像输入到单个卷积层中。现在取出输出,将它扔进一个黑盒子里然后再出现原始图像。这个黑盒子进行反卷积。它是卷积层的数学逆。

转置卷积有点类似,因为它产生与假设的反卷积层相同的空间分辨率。但是,对值执行的实际数学运算是不同的。转置卷积层执行常规卷积,但恢复其空间变换。

2D卷积,没有填充,步幅为2,内核为3

此时你应该很困惑,让我们看一个具体的例子。将5×5的图像送入卷积层。步幅设置为2,填充停用,内核为3x3。这导致2x2图像。

如果我们想要反转这个过程,我们需要逆数学运算,以便从我们输入的每个像素生成9个值。然后,我们以2的步幅遍历输出图像。这将是反卷积。

转换2D卷积,没有填充,步幅为2,内核为3

转置卷积不会这样做。唯一的共同点是它保证输出也是5x5图像,同时仍然执行正常的卷积操作。为此,我们需要在输入上执行一些花哨的填充。

正如您现在可以想象的那样,此步骤不会从上面颠倒过程。至少不涉及数值。

它只是从之前重建空间分辨率并执行卷积。这可能不是数学逆,但对于编码器-解码器架构,它仍然非常有用。这样我们就可以将图像的升级与卷积相结合,而不是进行两个单独的处理。

可分离的卷积

在可分离的卷积中,我们可以将内核操作分成多个步骤。让我们将卷积表示为y=conv(x,k),其中y是输出图像,x是输入图像,k是核。简单。接下来,假设k可以通过以下公式计算:k=k1.dot(k2)。这将使它成为可分离的卷积,因为我们可以通过用k1和k2进行2个1D卷积来得到相同的结果,而不是用k进行2D卷积。

Sobel X和Y滤镜

以Sobel内核为例,它通常用于图像处理。你可以通过乘以向量[1,0,-1]和[1,2,1].T得到相同的内核。在执行相同操作时,这将需要6个而不是9个参数。上面的例子显示了所谓的空间可分卷积,据我所知,它不用于深度学习。

编辑:实际上,通过堆叠1xN和Nx1内核层,可以创建与空间可分离卷积非常相似的东西。这最近在一个名为EffNet的架构中使用,显示了有希望的结果。

神经网络中,我们通常使用称为深度可分离卷积的东西。这将执行空间卷积,同时保持通道分离,然后进行深度卷积。在我看来,通过一个例子可以最好地理解它。

假设我们在16个输入通道和32个输出通道上有一个3x3卷积层。详细情况是,32个3x3核遍历16个通道中的每个通道,产生512(16x32)个特征映射。接下来,我们通过添加它们来合并每个输入通道中的1个特征图。由于我们可以做32次,我们得到了我们想要的32个输出通道。

对于同一示例中的深度可分离卷积,我们遍历16个通道,每个通道有1个3x3内核,为我们提供了16个特征映射。现在,在合并任何东西之前,我们遍历这16个特征映射,每个特征映射有32个1x1卷积,然后才开始将它们加在一起。这导致656(16x3x3+16x32x1x1)参数与上面的4608(16x32x3x3)参数相反。

该示例是深度可分离卷积的特定实现,其中所谓的深度乘数为1.这是迄今为止这种层的最常见设置。我们这样做是因为空间和深度信息可以解耦的假设。看一下Xception模型的表现,这个理论似乎有效。由于其有效使用参数,深度可分离卷积也用于移动设备。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100517
  • 图像
    +关注

    关注

    2

    文章

    1083

    浏览量

    40410
  • 深度学习
    +关注

    关注

    73

    文章

    5491

    浏览量

    120958

原文标题:卷积神经网络四种卷积类型

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是卷积神经网络?完整的卷积神经网络(CNNS)解析

    卷积神经网络(CNN)是一特殊类型神经网络,在图像上表现特别出色。卷积
    发表于 08-10 11:49 1.9w次阅读

    利用Keras实现四种卷积神经网络(CNN)可视化

    Keras实现卷积神经网络(CNN)可视化
    发表于 07-12 11:01

    卷积神经网络如何使用

    卷积神经网络(CNN)究竟是什么,鉴于神经网络在工程上经历了曲折的历史,您为什么还会在意它呢? 对于这些非常中肯的问题,我们似乎可以给出相对简明的答案。
    发表于 07-17 07:21

    什么是图卷积神经网络

    卷积神经网络
    发表于 08-20 12:05

    卷积神经网络的优点是什么

    卷积神经网络的优点
    发表于 05-05 18:12

    卷积神经网络的层级结构和常用框架

      卷积神经网络的层级结构  卷积神经网络的常用框架
    发表于 12-29 06:16

    卷积神经网络一维卷积的处理过程

    。本文就以一维卷积神经网络为例谈谈怎么来进一步优化卷积神经网络使用的memory。文章(卷积神经网络
    发表于 12-23 06:16

    卷积神经网络模型发展及应用

    十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学习样本数据的特征表示,
    发表于 08-02 10:39

    卷积神经网络原理:卷积神经网络模型和卷积神经网络算法

    卷积神经网络原理:卷积神经网络模型和卷积神经网络算法 卷积
    的头像 发表于 08-17 16:30 1413次阅读

    卷积神经网络的应用 卷积神经网络通常用来处理什么

    卷积神经网络的应用 卷积神经网络通常用来处理什么 卷积神经网络(Convolutional Ne
    的头像 发表于 08-21 16:41 4850次阅读

    卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点

    卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点 
    的头像 发表于 08-21 16:41 2820次阅读

    卷积神经网络的基本原理 卷积神经网络发展 卷积神经网络三大特点

    中最重要的神经网络之一。它是一由多个卷积层和池化层(也可称为下采样层)组成的神经网络。CNN 的基本思想是以图像为输入,通过网络
    的头像 发表于 08-21 16:49 2301次阅读

    卷积神经网络层级结构 卷积神经网络卷积层讲解

    卷积神经网络层级结构 卷积神经网络卷积层讲解 卷积神经网络
    的头像 发表于 08-21 16:49 7330次阅读

    卷积神经网络的介绍 什么是卷积神经网络算法

    卷积神经网络的介绍 什么是卷积神经网络算法 卷积神经网络涉及的关键技术
    的头像 发表于 08-21 16:49 1818次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积
    的头像 发表于 07-02 16:47 495次阅读