0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用超对称性解决这些问题的梦想已经破灭,物理学家必须面对这个现实

电子工程师 来源:YXQ 2019-04-29 14:19 次阅读

超对称是基本粒子理论中一个可能存在的数学结构,这一结构非常神奇。理论物理学家用它得出了一个比一个漂亮的结果。但这么漂亮的数学结构,是不是真的描写了我们这个宇宙的基本粒子?我们这个宇宙的基本粒子理论是不是真的是最漂亮的?目前的实验给出的答案是:否。我们也许需要更高能的实验才能发现超对称。也可能,超对称根本不存在。

高能粒子彼此碰撞,产生大量新的粒子,可以用探测器看到。通过重构每个粒子的能量、动量和其他性质,我们可以推断发生碰撞的粒子及其产物。自Wess和Zumino首次提出超对称性以来已经快50年了,但是还没有观测到任何超对称粒子。(来源:FERMILAB)

有时候,理论物理学会产生深奥的想法。如果某个想法一举解决了一系列疑难问题、同时给出新的可以检验的预测,就一定会引起极大的兴趣。它不仅提供了潜在的前进之路,还能吸引人们的想象力。如果它的预测得到证实,就可以开启对宇宙的全新认识。

当物理学家遇到超对称性(supersymmetry, SUSY)的时候,情况恰恰如此。没有人知道,在标准模型里,基本粒子的质量为什么比普朗克质量小得多?基本常数为什么不统一?暗物质可能是什么?超对称性理论对每一个问题都给出了答案,还预言了很多的新粒子。大型强子对撞机(LHC)的第二轮实验已经结束了,但是并没有发现那些粒子。用超对称性解决这些问题的梦想已经破灭,物理学家必须面对这个现实

标准模型的夸克和轻子的质量。在标准模型里,最重的粒子是顶夸克;最轻的是电子(不算中微子),其质量是511 keV/c2。中微子比电子至少要轻400万倍:这比其他粒子之间的差别大得多。在能量尺度的另一端,普朗克能量(1019GeV)大得令人不安。我们不知道有什么粒子比顶夸克还重。(来源:HITOSHI MURAYAMA OF HTTP://HITOSHI.BERKELEY.EDU/)

超对称性的动机可以追溯到量子力学的早期和电子的问题。电子是个问题,因为它没有大小——它是一个点粒子,但确实有电荷。只要有电荷,就会产生电场和电势。因为它本身有电荷,所以就能感受到自己产生的电势:电子存在的本身就导致了固有的能量。电子越小,其内部能量就越大。这意味着,如果电子真的是点粒子,其能量就必定是无限大。

当然,事实并非如此。电子的固有能量是有限的,由它的静止质量和著名的爱因斯坦方程E=mc2决定。

量子场论计算得到的量子真空中的虚拟粒子(具体地说,针对的是强相互作用)。即使周围一无所有,这种真空能量也不等于零。粒子-反粒子对可以突然出现或消失,与电子这样的真实粒子相互作用,从而修正电子非常重要的自能。(来源:DEREK LEINWEBER)

根据电磁学定律,如果电子的大小使得它的电能量等于它的质量,就可以得到电子的直径约为5×10-15米,比质子还要大。显然,这是不对的!

解决的办法是存在反物质、特别是正电子(也就是反电子)。在量子物理学里,真空不空——真空不是一无所有、空无一物,而是由许多虚粒子组成,它们不停地闪现、幻灭,其中就包括电子-正电子对。

电子不仅能产生光子并使之与自己发生相互作用,还能与电子-正电子对涨落中产生的正电子一起湮灭,只留下“涨落”中产生的电子。计算表明,这两种贡献几乎抵消,使得电子的尺寸非常小,尽管它的电荷比较大。

在标准模型以外,当然还会有新的物理。但是,除非能量远远超过大型对撞机所能达到的水平,新物理也许并不会出现。无论这种猜测是否正确,我们只能试试看。与任何其他工具相比,未来的对撞机可以更好地研究已知粒子的性质。到目前为止,LHC揭示的任何事情都没有超出标准模型的已知粒子。(来源:UNIVERSE-REVIEW.CA)

“好吧,好吧,”你说,“这是量子宇宙的伟大胜利。但这和超对称性有什么关系呢?”

要点在于,这种量子抵消之所以发生,就是因为理论中有一种对称性(物质和反物质之间的对称性)保护了电子的性质,使它具有特定的质量、大小和电荷性质。

超对称性的要点在于,可能存在一种额外的对称性(费米子和玻色子之间的对称性),类似地保护着物质的性质,而且使得粒子质量远小于普朗克尺度。粒子的质量不是大约1019GeV/c2,而是比它小17个数量级——只要标准模型里的每个粒子都有一个对应的超对称伴侣。

标准模型的粒子及其超对称伴侣。这些粒子已经发现了不到一半,另外的一半多些却不见踪迹。超对称性的想法希望改进标准模型,但是在试图补充主流理论的时候,还没有对宇宙做出成功的预言。(来源:CLAIRE DAVID / CERN)

你必须将已知的基本粒子数量翻一番,为每个已知的标准模型粒子创建一个超对称伴侣(标准模型里的每个玻色子都要有一个超对称费米子,每个费米子有一个超对称玻色子)。但是在理论上,这种对称性可以将这些粒子的质量降低到我们观察到的数值。

如果这些新的超对称粒子大约相当于电弱力的能量尺度(大约100GeV到几个TeV),它们也可以:

1、在LHC达到的能量范围里产生和测量;

2、使得三种量子力(电磁力、弱力和强核力)的耦合常数在理论的大统一尺度上近似统一;

3、产生一个中性的、稳定的超对称粒子——它是宇宙中暗物质的最佳候选者。

耦合常数作为能量的函数(采用双对数坐标),它们看起来并没有汇合在一起(左图)。如果按照预测的那样把超对称粒子加进去,耦合常数在~1015GeV(即通常的大统一尺度上)相遇,或者靠得更近。[来源:CERN (EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH), 2001]

自然界里有几个基本常数:万有引力常数(G),普朗克常数(h 或 ħ,即 h/2π),光速(c)。这些常数的不同组合可以得到时间、长度和质量的值——这些就是普朗克单位。如果用第一性原理来预测标准模型中粒子的质量,它们就应该是普朗克质量的量级,大约是1028eV/c2。但问题是,这个质量比宇宙中观察到的最重粒子的质量大了17个数量级,也就是100,000,000,000,000,000倍。

特别是希格斯玻色子,它应该有普朗克质量,所有其他粒子也应该如此——因为希格斯场与其他粒子耦合、给它们以质量。我们观测到的质量仅仅是125 GeV/c2,说明应该有其他一些东西起作用。

几年前,CMS合作项目和ATLAS合作项目宣布了希格斯玻色子的第一个可靠的5-sigma检测。因为其质量固有的不确定性,希格斯玻色子在数据中不是一个“尖峰”,而是一个宽宽的鼓包。它的质量是125GeV/c2,而不是更合理的预测值~1019GeV/c2——这是物理学的一个不解之谜。[来源:THE CMS COLLABORATION,“OBSERVATION OF THE DIPHOTON DECAY OF THE HIGGS BOSON AND MEASUREMENT OF ITS PROPERTIES”, (2014)]

从理论上讲,超对称性是解决这个难题的一种可能方法;实际上,任何已知的其他解决方案都是不可行的。然而,唯一可能的解决方案并不意味着就一定是正确的。事实上,对于物理学来说,超对称性的每一种预测都很有问题。

1、如果超对称性是等级问题的解决方案,那么LHC就绝对可以达到最轻的超伴侣粒子的能量。到目前为止,LHC还没有发现任何东西,这就足以推翻所有的超对称性模型——但它们本来就是为解决这个问题而设计的。

2、强力不能与其他力统一。到目前为止,在我们的宇宙中还没有统一的证据,因为质子衰变实验没有得到预期的结果。最初的动机在这里也站不住脚:如果你把三条曲线放在双对数坐标系,并在足够大的能量处放大,它们看起来总是像一个三角形,而没有汇合在单个点。

3、如果暗物质真的由最轻的超对称粒子构成,那么相应的观测实验早就应该检测到了(例如CDMS、 XENON和Edelweiss,等等)。此外,超对称性暗物质应该以一种非常特殊的方式湮灭,但是也从来没有观测到。

实验结果严格地限制了WIMP暗物质的范围。在最下方曲线以上的所有WIMP(相互作用微弱的有质量的粒子)截面和暗物质质量都被排除掉了。这意味着,超对称性暗物质的绝大多数模型是不可行的。(来源:XENON-100 COLLABORATION (2012), VIA HTTP://ARXIV.ORG/ABS/1207.5988)

对于这个想法来说,对撞机对其自身的限制是特别要命的。要想用超对称性解决质量为什么这么小的问题,你至少需要产生一个超对称粒子,其质量与标准模型最重的粒子具有相同的数量级。

这是设计和建造LHC进行观测的主要特征之一。那里根本就没有这些粒子,因而强烈地限制了它们的质量,理论学家再也不能只用超对称性来解决等级问题了。相反,必须有一些额外的机制(例如,劈裂的超对称性方案)来解释粒子的质量为什么这么小,而超对称伴侣的质量却那么大。换句话说,这个理论美丽、优雅而且有说服力,但是它的最初动机现在已经不再是主流了。它的预期目标并没有实现。

在LHC第一轮实验的早期,ATLAS合作项目在2000 GeV处看到了一种新粒子的“鼓包”(双玻色子,diboson),许多人希望这是一种新粒子的证据。不幸的是,随着更多数据的积累,人们发现这仅仅是一种统计噪音。从那以后,还没有发现新粒子的可靠特征。

[ATLAS 合作项目(左图), 来源:HTTP://ARXIV.ORG/ABS/1506.00962 ;

CMS合作项目(右图), 来源:HTTP://ARXIV.ORG/ABS/1405.3447]

关键是要知道超对称性究竟是什么,因为这个想法在理论上很有说服力。它优雅而有力地解决了其竞争对手解决不了的问题。它创造了新的可以检验的预言,而这些测试大部分都已经完成了。不幸的是,迄今为止的答案是,尽管超对称性可能很有趣,但是它描述的并不是我们的宇宙。

和以往一样,持续的实验将是大自然的最终裁判,但没有一个理性的人能够认为有证据支持超对称性。如果超对称性是错误的,很多人的整个职业生涯就进了死胡同——有史以来最有趣的一个死胡同。如果在任何能量尺度上,大自然都不存在超对称性(包括普朗克尺度,虽然这非常难以检验),那么弦理论(它导致了超对称性)就无法描述我们的宇宙。

不同星系团的X射线图(粉红色)和总物质图(蓝色)表明,正常物质和引力效应之间有明显的分离,这是暗物质的一些最有力的证据。尽管超对称性为暗物质提供了一种可能的解释,但它很难是唯一的理论。许多人希望它是解决的办法,但是并没有检测到它预言的粒子,这就构成了强有力的反驳。[来源:

X-RAY: NASA/CXC/ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND/D.HARVEY NASA/CXC/DURHAM UNIV/R.MASSEY; OPTICAL/LENSING MAP: NASA, ESA, D. HARVEY (ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND) AND R. MASSEY (DURHAM UNIVERSITY, UK)]

关于超对称性,科学家分为两个非常不同的阵营。一方面,有一大群人(既有理论学家也有实验学家)用证据说话,寻求这些谜团的其他解释,负责任地更加严格地限制其可行的范围。在近两代人里,这个理论在一个物理分支领域里占据着主导地位,排除它也将是科学的巨大进步。

但另一方面,有很多强有力的人(主要是理论学家)将永远相信超对称性,特别是电弱尺度下的超对称性,而不管证据是什么。然而,对于LHC碰撞的每一个新的质子,我们一次又一次地得到相同的答案:没有超对称性。不管我们是多么经常地自欺欺人,也不管有多少科学家被愚弄,大自然是实在性的最终裁判,实验不会说谎。到今天为止,还没有任何实验证据支持超对称性

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 粒子
    +关注

    关注

    0

    文章

    43

    浏览量

    12647

原文标题:为什么超对称可能是粒子物理学史上最失败的预言?

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3591次阅读

    欧姆定律的实际应用实例

    欧姆定律是电气工程和物理学中的一个基本定律,它描述了电流、电压和电阻之间的关系。这个定律由德国物理学家乔治·西蒙·欧姆在1827年首次提出,其公式为 V = IR,其中 V 代表电压(伏特),I
    的头像 发表于 10-28 15:27 417次阅读

    发射超声波是利用什么效应

    电场作用下会发生形变的现象。这种现象最早由法国物理学家雅克·库仑(Jacques Curie)和皮埃尔·库仑(Pierre Curie)兄弟在1880年发现。 压电材料 压电材料包括石英、锆钛酸铅(PZT)、钽酸锂(LiNbO3)等。这些材料的晶体结构具有非
    的头像 发表于 09-19 16:40 580次阅读

    运放的哪些参数可以反映出它的不对称性

    运放的对称性在温度低的时候可能不是很明显,影响也不大,但是随着温度的升高(例如从25度~~120度),温度升高输出方波的上述时间跟下降时间偏差也会越大,提高运放的SR能相对的减弱这种不对称的影响,但是导致这种不对称的根本原因
    发表于 09-10 08:12

    文氏桥振荡器的原理和应用

    文氏桥振荡器(Wien Bridge Oscillator),又称文氏电桥振荡电路或RC桥式正弦波振荡器,是一种基于RC串并联网络实现的振荡电路,由德国物理学家Max Wien在1891年发明。这种振荡器在电子通信、信号处理、科学实验以及众多电子设备中都有广泛的应用。
    的头像 发表于 07-30 18:06 1925次阅读

    超短激光脉冲使阿秒成像成为可能

    两位RIKEN物理学家已经实现了峰值功率为6太瓦(6万亿瓦)的极短激光脉冲,大致相当于6000座核电站的功率。这一成就将有助于进一步发展阿秒激光器,为此,三名研究人员获得了 2023 年诺贝尔
    的头像 发表于 06-26 06:36 268次阅读

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 1638次阅读
    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    了解几位发明天线的先驱

    1864年左右,苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了无线电理论。
    发表于 03-28 13:54 831次阅读
    了解几位发明天线的先驱

    什么是快激光?快激光的应用有哪些呢?

    激光的原理早在 1916 年已经由著名物理学家爱因斯坦(Albert Einstein)的受激辐射理论所预言。
    的头像 发表于 03-11 14:36 1544次阅读
    什么是<b class='flag-5'>超</b>快激光?<b class='flag-5'>超</b>快激光的应用有哪些呢?

    线圈磁场方向的判断方法什么定则

    线圈磁场方向的判断可以利用右手螺旋定则。该定则是由法国物理学家安德烈-玛丽·安培(Andre-Marie Ampere)于19世纪提出的。 右手螺旋定则是一种用于判断电流所产生的磁场的方向的方法
    的头像 发表于 02-25 17:07 4963次阅读

    电容单位为什么叫法拉?电容器是如何装电、放电的?

    电容单位为什么叫法拉?电容器是如何装电、放电的? 电容单位法拉的由来 电容单位法拉是以英国物理学家迈克尔·法拉第的名字而命名的。法拉第是19世纪最重要的物理学家之一,他对电磁学的研究做出了重大贡献
    的头像 发表于 02-02 10:08 2043次阅读

    简单介绍电流的单位:安培,安培

    物理学家认为电流从相对正的点流向相对的负点;这称为常规电流或富兰克林电流。
    的头像 发表于 01-30 11:00 2692次阅读

    量子半导体实现拓扑趋肤效应可用于制造微型高精度传感器和放大器

    德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。
    的头像 发表于 01-24 09:48 511次阅读

    拓扑量子器件的突破进展

    1月18日,德累斯顿和维尔茨堡的量子物理学家们取得了显著的科技突破。他们研发出一种半导体器件,其卓越的鲁棒和敏感度得益于一种量子现象——拓扑保护作用,能够免受外部干扰,实现前所未有的精准测量功能。
    的头像 发表于 01-23 14:59 542次阅读
    拓扑量子器件的突破<b class='flag-5'>性</b>进展

    光有“重量”吗?它受不受引力的作用呢?

    这个问题曾引起许多著名物理学家的好奇心,正因为对它不懈地思索,促使爱因斯坦建立著名的广义相对论,而对这个问题的实验观察,又使广义相对论的正确得以验证。
    的头像 发表于 12-28 10:19 586次阅读
    光有“重量”吗?它受不受引力的作用呢?