0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

实现无人驾驶的难点在哪?

ml8z_IV_Technol 来源:YXQ 2019-05-08 14:17 次阅读

如果自动驾驶标准是按照L5级别来要求的话,那确实还有很长的路要走,因为今天关于完全自动驾驶汽车还存在许多争议,不仅是技术上的,还包括法律、伦理等方面的界定。但罗马不是一天建成,饭也不是一口吃大,如果我们适当降低标准,以有限的自动驾驶来看,比如L2-L3级别,那么我们已经看到有很多公司在这样做,而且已经离我们很近了。

最近几年,自动驾驶车一直是传统汽车厂商、一级零配件供应商孜孜探索的领域,也是包括IT公司和互联网公司在内都很关注的风口。

虽然大家一直都在讨论这个热点,但是关于“自动驾驶何时能量产?全自动驾驶什么时候实现?”说了这么多年,似乎依然是个未知数。

有人说:“自动驾驶汽车是活在梦里,不可能实现。”

如果说的这个人是按照L5级别来要求的话,那确实还有很长的路要走,因为今天关于完全自动驾驶汽车还存在许多争议,不仅是技术上的,还包括法律、伦理等方面的界定。

但罗马不是一天建成,饭也不是一口吃大,如果我们适当降低标准,以有限的自动驾驶来看,比如L2-L3级别,那么我们已经看到有很多公司在这样做,而且已经离我们很近了。

说到这儿,也许你还有点云里雾里:“L2、L5这些术语代表什么?”

为了方便您了解自动驾驶汽车,我们先来一个简单科普。

1、什么是自动驾驶?

有关自动驾驶,美国汽车工程师协会(SAE)已经对其技术定义了六级自动化级别。

从图中可以看到,L2级和L3级之间有条分界线:L2级及以下,由驾驶员主导监视环境;L3级及以上,由系统监视环境。

所以,可以说L2级到L3级是一个明显的分界点——从ADAS(高级辅助驾驶)向AD(自动驾驶)过渡。

通俗来讲,L3级以下和L3级以上最大区别就是,汽车能否像人一样感知周围环境并做出决策。

而在现阶段,L5级存在着巨大争议,尽管很多创业公司、IT公司以及车企都把L5视作终极目标,但无论是法律、法规方面的阻碍,还是技术成熟度上的局限,都使人们意识到实现L5还需要很长时间。

所以在现阶段的市场上,大多数传统车企更着力于研发L2/L3级别的自动驾驶技术,并行研究封闭场景内的L4级自动驾驶系统。

2、实现自动驾驶的难点在哪?

那么,当前阶段实现自动驾驶的难点在哪呢?

这里我们就要讨论自动驾驶的三大要素——感知层、决策层和执行层

感知层

相当于驾驶员的眼睛和耳朵,由各种各样的传感器来完成对外部环境的判断和识别。

考虑到复杂的外界场景,多传感器的融合技术是一个趋势。目前主流的有两套传感器系统,一套以雷达和摄像头为主的感知系统,和一套以激光雷达为主的感知系统,两套系统互为备份提供冗余性、覆盖范围和精度上的需求。

决策层

相当于驾驶员的大脑,通过控制器对环境的认知以及路径规划进行决策判断。

L2级别以下的ADAS系统,主要对传感器收集的数据进行筛选和分析;而L3级别以上,需要系统对环境进行认知,参与到路径规划和决策判断中来。

在此场景下,深度学习算法、大量算力以及存储海量数据的价值就凸显出来了,决策层的关键点就在于车载芯片和算法。

执行层

相当于驾驶员的手和脚,来完成车辆制动、转向和驱动。

自动驾驶的算法和芯片依赖于机械特性强有力的执行来完成决策层的指令,包括以电机为核心驱动的电子转向和电子制动等核心部件。

在自动驾驶场景下,有关制动系统的要求会更高,自动驾驶需要更快地线控车辆系统,包括电子油门、线控转向以及电子机械制动系统。

这三个要素中,每个要素都至关重要,缺一不可。

其中,核心决策层的研发尤为关键。

传感器和执行层,可以配置多套冗余系统进行保护。但是决策层的核心算法如何保证可靠性和安全性,是自动驾驶研发中最为关键的核心讨论点。

很多IT跨国公司、车企、创业者都把目光聚焦到这个核心算法领域。

3、自动驾驶行业格局

最近,资讯机构Navigant Research公布了2019自动驾驶领导力排行榜,谷歌母公司Alphabet旗下的Waymo公司拔得头筹。

至于评判标准,是根据每家公司在「愿景」、「商业化策略」、「合作方」、「量产计划」、「技术」以及「产品持久力」这几个方面的综合表现进行打分排名。

来源:Navigant Research

Waymo从2018年的第七位一跃成为今年的第一,从去年开始的大规模商业化试运营应该是其领先的重要原因。

既然决策层对于自动驾驶技术如此重要,难道一马当先的Waymo公司背后,都是算法工程师吗?

数字媒体公司The Information对Waymo的组织架构进行了梳理。

在Waymo的950名员工中,工程研发团队一共610人,其中340人属于软件团队,260人属于硬件工程团队。而在340人的软件团队中,划分是这样的:

从软件团队的人员结构可以看出,Waymo最重视基础架构,研发自动驾驶主要依靠的是基础架构设施。这是因为,无论是深度学习还是仿真验证,都需要大量的IT基础架构提供支持。

4、Waymo为何重视IT基础架构?

为什么基础架构设施这么关键呢?这就要从自动驾驶研发平台遇到的一些挑战说起了。

.

ADAS研发基础架构挑战之一:海量非结构化数据

ADAS/AD的研发需要基础架构提供海量数据和高带宽的性能。传感器的数据大多是非结构化数据,以图像、视频、点云文件、日志文件为主。面对不同的SAE级别,数据量的要求如下:

·L2级别的ADAS系统,需要4-10PB的数据和1,000-5,000核的计算资源;

·L3级别的ADAS系统,需要50-100PB的海量数据和5,000-25,000核的计算资源;

·到了L5级别实现完全自动驾驶,需要超过2EB级别的数据量。如果按照1TB的硬盘来计算的话,2EB的数据量相当于200万个1TB的移动硬盘。

5、为什么需要这么多数据?

因为要训练和测试足够多的复杂场景。

Waymo首席科学家Dargo Anguelov在MIT的深度学习课程中第一次分享了自动驾驶研发遇到的一些挑战和最佳实践。

其中有几个比较有趣的场景。

来源:Waymo

左图一有几个行人背着木板在行走,图二是一个镜面反射问题,图三是一个人在骑马。在这样的场景下,深度学习如何更好地判断周围环境,不仅仅要求算法对物体进行识别,更要求识别复杂场景的能力。

面对这样的复杂场景,如何保证算法的可靠性呢?

使用大量标注过的数据对深度学习网络进行监督训练,使得物体感知甚至到对于复杂场景的识别成为可能,这些技术在Waymo自动驾驶研发过程中得到了大规模的应用。

Dargo也提出,随着Waymo采集数据的场景增多,深度学习的算法也有了更频繁的用处。

有了这么多数据,如何对其进行管理?如何保证持续增长的数据量能够被研发团队最高效地使用?

这就是IT技术架构能为ADAS/AD提供的核心竞争力。

来源:Waymo

研发基础架构挑战之二——高性能和高带宽的要求

众所周知,深度学习需要对数据进行训练,而且是多次重复调参的训练。

要实现成熟的模型算法,仅有算法和数据是不够的,更重要的要达到大量的算力性能要求,一个深度学习模型需要经过多少次计算才能完成一次前馈啊!

除了大量GPU算力要求,我们还需要利用大量高带宽性能读取真实环境数据,以进行仿真测试。Waymo研发部门每天会进行大量的仿真测试,回放真实采集的环境数据,24×7地进行仿真测试,验证算法的可靠性,确保系统的准确性。

这些真实环境数据每天都会被分类成不同的场景,从存储中高带宽地读取到HPC服务器上,进行大量的仿真测试。

除了软件在环(SiL),还有硬件在环的仿真测试。将真实的车载硬件设备加载算法,回放数据,进行硬件在环的仿真测试。

硬件在环测试平台(HiL)对于数据读取的延迟要求非常高,需要在数百纳秒和数微秒之间。如此小的延迟让硬件在环仿真的实现变得非常具有挑战性,也很难将仿真测试放到公有云上来实现。

在我们看到的仿真测试场景中,存储带宽要求竟高达800GB/s,这是因为研发团队需要对数据进行并发读取和回写,才能保证研发周期。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2548

    文章

    50660

    浏览量

    751826
  • 无人驾驶
    +关注

    关注

    98

    文章

    4029

    浏览量

    120275

原文标题:你想要的自动驾驶汽车,为何迟迟不能出现?

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    低速无人驾驶清扫机器人无线充电解决方案

    随着城市化进程的推进,公共区域清扫需求日益增长。低速无人驾驶清扫机器人采用无线充电技术,有效降低人力成本和维护成本,提高清扫效率,符合环保趋势。市场需求增长,为低速无人驾驶清扫机器人提供新的增长点。
    的头像 发表于 11-18 14:02 27次阅读

    UWB模块如何助力无人驾驶技术

    无人驾驶技术飞速发展的今天,精确的定位和通信能力成为了实现安全、高效自动驾驶的关键。超宽带(UWB)技术以其独特的优势,正在成为这一领域的新宠。 一、UWB技术简介 超宽带技术是一种无线通信技术
    的头像 发表于 10-31 14:05 231次阅读

    无线充电技术为低速无人驾驶清扫车注入无限动力

    无人驾驶清扫机器人采用无线充电技术,提高运行效率、安全性和耐候性,降低维护成本。青岛鲁渝能源推出专为低速无人驾驶车设计的无线充电器,快速高效且安全,支持智能优化充电,助力智慧城市发展。
    的头像 发表于 10-25 10:53 158次阅读

    特斯拉推出无人驾驶Model Y

    北京时间10月11日,特斯拉“WE,ROBOT”发布会正式举行,在特斯拉发布会上,特斯拉推出无人驾驶Model Y。 在发布会上;埃隆·马斯克乘坐Robotaxi亮相。马斯克透露预计特斯拉明年将在
    的头像 发表于 10-11 16:05 960次阅读

    特斯拉发布无人驾驶出租车,没有方向盘和踏板

    特斯拉近日宣布了一项令人瞩目的创新,正式推出名为CyberCab的无人驾驶出租车。这款出租车设计独特,拥有两个鸥翼车门,极具未来感。更引人注目的是,CyberCab取消了方向盘和踏板,完全实现无人驾驶。此外,特斯拉还宣布将在C
    的头像 发表于 10-11 15:49 290次阅读

    百度计划海外推出萝卜快跑无人驾驶服务

    百度正积极拓展其无人驾驶网约车服务至中国境外,意在增强全球竞争力。据悉,百度有意在中国香港、新加坡及中东地区测试和部署其萝卜快跑(Apollo Go)无人驾驶出租车服务。
    的头像 发表于 10-11 15:43 234次阅读

    易控智驾无人驾驶项目落地红沙泉露天煤矿

    在国能新疆红沙泉一号露天煤矿上,一辆辆白色无人驾驶矿卡在层层叠叠的矿山中穿梭作业,40台百吨级新能源无人驾驶矿卡 ET100已经正式规模化“上岗”,并已实现了稳定“下人”运行。
    的头像 发表于 09-03 10:01 514次阅读

    5G赋能车联网,无人驾驶引领未来出行

    无人驾驶车联网应用已成为智能交通领域的重要发展趋势。随着无人驾驶技术的不断进步和5G网络的广泛部署,5G工业路由器在无人驾驶车联网中的应用日益广泛,为无人驾驶车辆提供了稳定、高效、低时
    的头像 发表于 07-24 10:10 724次阅读
    5G赋能车联网,<b class='flag-5'>无人驾驶</b>引领未来出行

    无人驾驶汽车应用晶振TSX-3225

    身体发挥着大大的能量。无人驾驶汽车是现代科技的前沿领域,依赖精密的传感器、通信模块和控制系统来实现自主导航和行驶。晶体振荡器(晶振)在这些系统中起着至关重要的作用,
    的头像 发表于 06-18 10:55 359次阅读
    <b class='flag-5'>无人驾驶</b>汽车应用晶振TSX-3225

    中国或支持特斯拉测试无人驾驶出租

    特斯拉首席执行官马斯克近期的中国之行引发了业界的广泛关注,特别是在“无人驾驶出租车”的推广方面。据悉,特斯拉有意将其“无人驾驶出租车”服务引入中国市场。
    的头像 发表于 05-09 09:29 409次阅读

    如何利用无人机物联卡实现无人驾驶飞行

    无人机物联卡是专为无人机设计的物联卡,实现实时连接并提供定位、控制、数据传输等功能。无人驾驶飞行通过传感器、控制算法和飞行控制系统实现。使用
    的头像 发表于 04-15 13:32 473次阅读

    吉利汽车成功完成全球首个无人驾驶漂移!

    吉利汽车成功完成全球首个无人驾驶漂移!
    的头像 发表于 03-27 14:17 719次阅读
    吉利汽车成功完成全球首个<b class='flag-5'>无人驾驶</b>漂移!

    5G车载路由器引领无人驾驶车联网应用

    随着无人驾驶技术的不断发展,车联网正逐渐成为实现智能交通的重要组成部分。5G车载路由器将在车联网的应用中起到至关重要的作用,它能够满足无人驾驶应用的低时延、高速率和实时控制等需求,进一步推动
    的头像 发表于 02-19 11:48 759次阅读
    5G车载路由器引领<b class='flag-5'>无人驾驶</b>车联网应用

    小马智行启动深圳中心城区无人驾驶商业化运营

    小马智行近日宣布,已在深圳市宝安区启动中心城区无人驾驶商业化运营。该公司已获得深圳市宝安区颁发的智能网联汽车无人商业化试点许可,标志着其在无人驾驶技术领域取得了重要突破。
    的头像 发表于 02-04 10:53 861次阅读

    无人驾驶汽车,不听指挥,只看路灯?

    无人驾驶洞见分析
    电子发烧友网官方
    发布于 :2024年02月02日 18:04:30