0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

RepPoints 比边界框更好用的目标检测方法

电子工程师 来源:fqj 2019-05-09 17:25 次阅读

来自北京大学、清华大学和微软亚洲研究院的研究人员提出一种新的、更精细的对象表示方法RepPoints,抛弃了流行的边界框表示,结果与最先进的基于 anchor 的检测方法同样有效。

目标检测是计算机视觉中最基本的任务之一,也是许多视觉应用的关键组成部分,包括实例分割、人体姿态分析、视觉推理等。

目标检测的目的是在图像中定位目标,并提供目标的类别标签

近年来,随着深度神经网络的快速发展,目标检测问题也取得了长足的进展。

当前先进的目标检测器很大程度上依赖于矩形边界框来表示不同识别阶段的对象,如 anchors、proposals 以及最终的预测。

边界框使用方便,但它只提供目标的粗略定位,导致对目标特征的提取也相当粗略。

近日,来自北京大学、清华大学和微软亚洲研究院的杨泽、王立威、Shaohui Liu 等人在他们的最新论文中,提出了一种新的、更精细的对象表示方法 ——RepPoints (representative points),这是一组对定位和识别都很有用的样本点 (sample points)。

RepPoints 比边界框更好用的目标检测方法

给定训练的 ground truth 定位和识别目标,RepPoints 学会自动以限制目标的空间范围的方式来排列自己,并表示在语义上重要的局部区域。此外,RepPoints 不需要使用 anchor 来对边界框的空间进行采样。

作者展示了一个基于 RepPoints 的、anchor-free 的目标检测器,不需要多尺度训练和测试就可以实现,而且与最先进的基于 anchor 的检测方法同样有效,在 COCO test-dev 检测基准上达到了42.8 AP 和 65.0 AP₅₀。

抛弃边界框,更细粒度的目标表示RepPoints

在目标检测过程中,边界框是处理的基本元素。边界框描述了目标检测器各阶段的目标位置。

虽然边界框便于计算,但它们仅提供目标的粗略定位,并不完全拟合对象的形状和姿态。因此,从边界框的规则单元格中提取的特征可能会受到包含少量语义信息的背景内容或无信息的前景区域的严重影响。这可能导致特征质量降低,从而降低了目标检测的分类性能。

本文提出一种新的表示方法,称为 RepPoints,它提供了更细粒度的定位和更方便的分类。

如图 1 所示,RepPoints 是一组点,学习自适应地将自己置于目标之上,其方式限定了目标的空间范围,并表示语义上重要的局部区域。

RepPoints 比边界框更好用的目标检测方法

图 1:RepPoints 是一种新的目标检测表示方法

RepPoints 的训练由目标定位和识别目标共同驱动,因此,RepPoints 与 ground-truth 的边界框紧密相关,并引导检测器正确地分类目标。

这种自适应、可微的表示可以在现代目标检测器的不同阶段连贯地使用,并且不需要使用 anchors 来对边界框空间进行采样。

RepPoints 不同于用于目标检测现有的非矩形表示,它们都是以自底向上的方式构建的。这些自底向上的表示方法会识别单个的点 (例如,边界框角或对象的末端)。此外,它们的表示要么像边界框那样仍然是轴对齐的,要么需要 ground truth 对象掩码作为额外的监督。

相反,RepPoints 是通过自顶向下的方式从输入图像 / 对象特征中学习的,允许端到端训练和生成细粒度的定位,而无需额外的监督。

为了证明 RepPoints 表示的强大能力,我们提出了一种基于可变形 ConvNets 框架的实现,该框架在保证特征提取方便的同时,提供了适合指导自适应采样的识别反馈。

我们发现,这个无 anchor 的检测系统在对目标进行精确定位的同时,具有较强的分类能力。在没有多尺度训练和测试的情况下,我们的检测器在 COCO 基准上实现了 42.8 AP 和 65.0 AP₅₀ 的精度,不仅超过了所有现有的 anchor-free 检测器,而且性能与最先进的 anchor-based 的基线模型相当。

RepPoints vs 边界框

本节将描述 RepPoints,以及它与边界框的区别。

边界框表示

边界框是一个 4-d 表示,编码目标的空间位置,即 B = (x, y, w, h), x, y 表示中心点,w, h 表示宽度和高度。

由于其使用简单方便,现代目标检测器严重依赖于边界框来表示检测 pipeline 中各个阶段的对象。

性能最优的目标检测器通常遵循一个 multi-stage 的识别范式,其中目标定位是逐步细化的。其中,目标表示的角色如下:

RepPoints 比边界框更好用的目标检测方法

RepPoints

如前所述,4-d 边界框是目标位置的一个粗略表示。边界框表示只考虑目标的矩形空间范围,不考虑形状、姿态和语义上重要的局部区域的位置,这些可用于更好的定位和更好的目标特征提取。

为了克服上述限制,RepPoints 转而对一组自适应样本点进行建模:

RepPoints 比边界框更好用的目标检测方法

其中 n 为表示中使用的样本点的总数。在这项工作中,n 默认设置为 9。

Learning RepPoints

RepPoints 的学习是由目标定位损失和目标识别损失共同驱动的。为了计算目标定位损失,我们首先用一个转换函数 T 将 RepPoints 转换为伪框 (pseudo box)。然后,计算转换后的伪框与 ground truth 边界框之间的差异。

图 3 显示,当训练由目标定位损失和目标识别损失组合驱动时,目标的极值点和语义关键点可以自动学习。

图 3: 学习的 RepPoints 的可视化和来自 COCO minival set 的几个例子的检测结果。通常,学习的 RepPoints 位于目标的端点或语义关键点上。

RPDet: 无需 Anchor 的目标检测器

我们设计了一种不使用 anchor 的对象检测器,它利用 RepPoints 代替边界框作为基本表示。

目标表示的演化过程如下:

RepPoints 比边界框更好用的目标检测方法

RepPoints Detector (RPDet) 由两个基于可变形卷积的识别阶段构成,如图 2 所示。

RepPoints 比边界框更好用的目标检测方法

图 2:RPDet (RepPoints detector) 的概览,以特征金字塔网络 (FPN) 为主干

可变形卷积与 RepPoints 很好地结合在一起,因为它的卷积是在一组不规则分布的采样点上计算的,反之,它的识别反馈可以指导训练这些点的定位。

实验和结果

RepPoints 比边界框更好用的目标检测方法

表 1:目标检测中 RepPoints 与边界框表示的比较。除了处理给定的目标表示之外,网络结构是相同的。

从表 1 可以看出,将目标表示从边界框变为 RepPoints,可以带来一定程度的性能提升,如使用 ResNet-50 作为主干网络时提升了 2.1 mAP,使用 ResNet-101 时提升了 2.0 mAP。这表明相对于边界框,RepPoints 表示在对象检测方面具有优势。

RepPoints 比边界框更好用的目标检测方法

表 7:将所提出的 RPDet 与 COCO test-dev 上最先进的检测器进行比较。

如表 7 所示,在没有 multi-scale 训练和测试的情况下,所提出的框架使用 ResNet-101-DCN 主干网络实现了 42.8 AP,与基于 anchor 的 Cascade R-CNN 方法相当,性能优于现有的所有不采用 anchor 的检测器。此外,RPDet 获得了 65.0 的 AP₅₀,大大超过了所有基线。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 目标检测
    +关注

    关注

    0

    文章

    209

    浏览量

    15605

原文标题:北大、清华、微软联合提出RepPoints,比边界框更好用的目标检测方法

文章出处:【微信号:aicapital,微信公众号:全球人工智能】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    挑战的方法。 2 目标检测模型介绍 在目标检测的任务中,有着许许多多的模型,如 Picodet、Faster R-CNN、YOLO、SSD等
    发表于 12-19 14:33

    图像分割与目标检测的区别是什么

    图像分割与目标检测是计算机视觉领域的两个重要任务,它们在许多应用场景中都发挥着关键作用。然而,尽管它们在某些方面有相似之处,但它们的目标方法和应用场景有很大的不同。本文将介绍图像分割
    的头像 发表于 07-17 09:53 1275次阅读

    目标检测与图像识别的区别在哪

    检测(Object Detection)是指在图像或视频中识别并定位感兴趣的目标,通常包括目标的类别和位置。目标检测的目的是找出图像中所有感
    的头像 发表于 07-17 09:51 851次阅读

    目标检测与识别技术有哪些

    目标检测与识别技术是计算机视觉领域的重要研究方向,广泛应用于安全监控、自动驾驶、医疗诊断、工业自动化等领域。 目标检测与识别技术的基本概念 目标
    的头像 发表于 07-17 09:40 590次阅读

    目标检测与识别技术的关系是什么

    目标检测与识别技术是计算机视觉领域的两个重要研究方向,它们之间存在着密切的联系和相互依赖的关系。 一、目标检测与识别技术的概念 目标
    的头像 发表于 07-17 09:38 581次阅读

    目标检测识别主要应用于哪些方面

    目标检测识别是计算机视觉领域的一个重要研究方向,它主要关注于从图像或视频中识别和定位目标物体。随着计算机视觉技术的不断发展,目标检测识别已经
    的头像 发表于 07-17 09:34 1040次阅读

    慧视小目标识别算法 解决目标检测中的老大难问题

    得到解决。但其中弱小目标检测性能差的问题仍十分显著,并没有出现较为有效的针对弱小目标检测的技术手段和方法,使得弱小
    的头像 发表于 07-17 08:29 477次阅读
    慧视小<b class='flag-5'>目标</b>识别算法   解决<b class='flag-5'>目标</b><b class='flag-5'>检测</b>中的老大难问题

    图像检测和图像识别的原理、方法及应用场景

    目标物体的过程。它的目标是确定图像中是否存在特定的物体,并在图像中找到这些物体的位置,通常以矩形的形式表示。 1.2 图像识别 图像识别(Object Recognition)是指识别图像中的对象,并将其分类为预定义的类别之
    的头像 发表于 07-16 11:19 3958次阅读

    基于深度学习的小目标检测

    )的广泛应用,小目标检测的性能得到了显著提升。本文将详细探讨基于深度学习的小目标检测技术,包括其定义、挑战、常用方法以及未来发展方向。
    的头像 发表于 07-04 17:25 861次阅读

    纵观全局:YOLO助力实时物体检测原理及代码

    YOLO 流程的最后一步是将边界预测与类别概率相结合,以提供完整的检测输出。每个边界的置信度分数由类别概率调整,确保
    的头像 发表于 03-30 14:43 2395次阅读

    深度学习检测目标常用方法

    深度学习的效果在某种意义上是靠大量数据喂出来的,小目标检测的性能同样也可以通过增加训练集中小目标样本的种类和数量来提升。
    发表于 03-18 09:57 711次阅读
    深度学习<b class='flag-5'>检测</b>小<b class='flag-5'>目标</b>常用<b class='flag-5'>方法</b>

    AI驱动的雷达目标检测:前沿技术与实现策略

    传统的雷达目标检测方法,主要围绕雷达回波信号的统计特性进行建模,进而在噪声和杂波的背景下对目标存在与否进行判决,常用的典型算法如似然
    发表于 03-01 12:26 2778次阅读
    AI驱动的雷达<b class='flag-5'>目标</b><b class='flag-5'>检测</b>:前沿技术与实现策略

    cyw20721对cyw20706哪个更好

    请教下:cyw20721对cyw20706,传输音频,那个有更好的特性呢
    发表于 03-01 08:44

    超级电容器电池更好吗?

    超级电容器是一种新型的储能器件,主要用于断电后提供短期能量的后备电源,其能量密度介于普通电容和二次电池之间,同时具有高比容量和功率的特点。那超级电容器电池更好吗?让我们来从以下几点看看超级电容器
    发表于 02-18 15:38

    对象检测边界损失函数–从IOU到ProbIOU介绍

    目标检测损失函数的选择在目标检测问题建模中至关重要。通常,目标检测需要两个损失函数,一个用于对象
    的头像 发表于 01-24 10:50 2794次阅读
    对象<b class='flag-5'>检测</b><b class='flag-5'>边界</b><b class='flag-5'>框</b>损失函数–从IOU到ProbIOU介绍