0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用人工神经网络控制真实大脑,MIT的科学家做到了

mK5P_AItists 来源:工程师李察 2019-05-11 16:45 次阅读

三位研究者分别是 MIT 大脑与行为科学系主任 James DiCarlo、MIT 博士后 Pouya Bashivan 和 Kohitij Kar。相关论文发表在 5 月 2 日 Science 的网络版上。

论文链接:http s://www.biorxiv.org/content/10.1101/461525v1

研究人员表示,他们最初的目的是探索大脑如何感知和理解视觉世界。为此,他们创建了可以模拟大脑视觉皮层的计算模型。但仅仅创建模型是不够的,他们还想知道自己创建的模型是否准确。

于是,他们尝试用创建的模型控制神经元,测试他们的模型能否精确地控制单个神经元以及视觉神经网络中的神经元群。这是一项非常严格的测试。

他们将自己创建的计算模型称为「controller」,用这一模型控制另一个系统的输出,也就是实验中猴子大脑的神经活动。

首先,他们利用从该计算模型中获得的信息创建了特定的图像。这些图像与自然图像存在很大的差别,如下图所示。

研究人员利用深度神经网络模型合成的图像。

研究人员将这些图像展示给实验中的猴子,观察图像是否可以强烈激活他们选择的特定脑神经元。

实验结果表明,这些图像可以强烈激活他们选择的特定脑神经元。也就是说,他们利用自己创建的人工神经系统成功控制了真实神经系统的活动。

实验步骤

过去几年里,DiCarlo 及其他人开发出了基于人工神经网络的视觉系统模型。每个网络开始时具有一个包含模型神经元或节点的任意架构,这些不同强度(也可称权重)的神经元或节点彼此之间可以相互连接。

随后,研究者在一个拥有 100 多万张图像的库中训练这些模型。当研究者向模型展示每张图像,并给图像中最突出的物体添加标签(如飞机或椅子等)时,模型通过改变其连接强度来学习识别物体。

虽然很难准确确定模型如何实现这种识别,但 DiCarlo 及其同事之前已经证实了这些模型中的「神经元」产生的活动模式与动物视觉皮层对同一图像的反应非常相似。

研究者设计了几个闭环的神经生理学实验:在将模型神经元与每个记录的大脑神经位点匹配之后,他们使用模型合成了全新的「controller」图像。接下来,他们将这些图像展示给每个目标,以测试模型控制目标神经元的能力。

在一项测试中,研究人员让模型尝试控制每个大脑神经元,使其激活程度超过其平时观察到的最大激活水平。他们发现,模型生成的合成刺激成功地驱动 68% 的神经位点超出了它们的自然观察激活水平。

在一项更加严格的测试中,研究人员试图生成能够最大限度地控制一个神经元的图像,同时保持附近神经元的活跃度非常低,这是一项更加困难的任务。

但这没有难倒他们。对于测试的大多数神经元,研究人员能够增强目标神经元的活跃度,而周围神经元的活跃度几乎没有增加。

接下来,研究者利用这些非自然合成的 controller 图像来测试模型预测大脑反应的能力是否可以适用于这些全新的图像。结果表明,模型非常准确,预测到了 54% 的图像诱发的大脑反应模式,不过这还不够完美。

「此前,模型已经能够预测神经对其他未见过的刺激的反应,」Bashivan 表示。「这里主要的不同之处在于我们又往前走了一步,即利用模型控制神经元达到我们想要的状态。」

为了达到这一目标,研究人员首先在计算模型中创建了大脑 V4 视觉区域神经元到节点的一对一映射。他们通过向动物和模型展示图像,并比较它们对相同图像的反应来实现这一目的。V4 区有数百万个神经元,但在这项研究中,研究人员每次只创建 5~40 个神经元的映射。

「一旦搞清楚了每个神经元的分工,模型就能对神经元做出预测。」DiCarlo 表示。

研究人员开始研究能否利用这些预测来控制视觉皮层单个神经元的活动。他们用到的第一种控制叫做「stretching」,包括展示一幅将会控制某个特定神经元的图像。

研究人员发现,当他们向动物展示这些由模型创建的非常规「合成」图像时,目标神经元的确做出了预期的反应。平均而言,这些神经元对合成图像的反应要比它们看到用于训练模型的自然图像时活跃 40% 左右。这种控制方法也是首创性的。

「实验数据收集和计算建模分开进行是神经科学的一个普遍趋势,这使得模型验证非常少,因此缺乏可量化的进展。我们的工作使这一『闭环』方法」重获生机,将模型预测和神经测量都包含进来,这些对成功构建和测试最接近大脑的模型至关重要,」Kar 表示。

用人工神经网络控制真实大脑,MIT的科学家做到了

图 1:合成步骤概览。A) 两个受测控制场景的图示。C) 神经控制实验具体步骤。D) 猴子 M(黑色)、N(红色)和 S(蓝色)的神经位点感受野。其中 C 展示了神经控制实验的四个步骤:在大量标注自然图像上训练神经网络,以优化其参数,然后保持不变;将 ANN「神经元」映射到每个记录的 V4 神经位点;使用得到的可微模型合成「controller」图像,用于 single-site 或群体控制;将这些图像指定的发光模式应用于受试者的视网膜,衡量神经位点的控制水平。

证明用人工神经网络理解真实神经网络的可行性

实验结果表明,当前这些模型与大脑非常类似,可用于控制动物的脑状态。James DiCarlo 称,该研究还有助于确定这些模型的有用性,而这引起了它们是否可以精确模拟视觉皮层工作的激烈争论。

他还说道:「人们对这些模型是否可以理解视觉系统提出了质疑。抛却学术意义上的争论,我们证实了这些模型已经足够强大,能够促成一项重要的新应用。无论你是否理解该模型的工作原理,从这层意义上来说已经很有用了。」

「他们做到的这一点真的很棒。就好像那副理想的图像突然抓住了那个神经元的注意力。那个神经元突然找到了它一直以来寻找的刺激,」匹兹堡大学生物工程学副教授 Aaron Batista 表示。「这个想法非常了不起,将其变为现实更加了不起。*这可能是用人工神经网络理解真实神经网络迄今为止最有力的证明*。」

研究成果有望用于治疗抑郁症

研究者表示,对于那些想要研究不同神经元如何相互作用和如何连接的神经科学家来说,这种控制可能有用。在遥远的未来,这种方法有可能在治疗抑郁症等情绪障碍中发挥作用。目前,研究者正在研究将他们的模型扩展至为杏仁体提供养料的颞下皮层,而杏仁体又涉及到情绪处理。

Bashivan 表示:「如果我们有一个优秀的神经元模型,它可以体验情绪或引发不同种类的失调,我们就可以使用该模型控制神经元,来帮助缓解失调状况。」

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络
    +关注

    关注

    14

    文章

    7522

    浏览量

    88648
  • 计算
    +关注

    关注

    2

    文章

    446

    浏览量

    38738
  • 神经
    +关注

    关注

    0

    文章

    45

    浏览量

    12514

原文标题:用人工神经网络控制真实大脑,MIT的科学家做到了

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    BP神经网络人工神经网络的区别

    BP神经网络人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及
    的头像 发表于 07-10 15:20 862次阅读

    神经网络控制的优势与挑战

    神经网络控制是一种利用人工神经网络对复杂系统进行建模和控制的方法。它在许多领域得到了广泛的应用,
    的头像 发表于 07-09 09:47 491次阅读

    人工神经网络的案例分析

    人工神经网络(Artificial Neural Network, ANN)作为深度学习领域的重要分支,自20世纪80年代以来一直是人工智能领域的研究热点。其灵感来源于生物神经网络,通
    的头像 发表于 07-08 18:20 685次阅读

    人工神经网络模型包含哪些层次

    人工神经网络(Artificial Neural Network,ANN)是一种模拟人脑神经网络的计算模型,具有自适应、自学习、泛化能力强等特点。本文将详细介绍人工
    的头像 发表于 07-05 09:17 499次阅读

    人工神经网络模型的分类有哪些

    人工神经网络(Artificial Neural Networks, ANNs)是一种模拟人脑神经元网络的计算模型,它在许多领域,如图像识别、语音识别、自然语言处理、预测分析等有着广泛的应用。本文将
    的头像 发表于 07-05 09:13 981次阅读

    人工神经网络的工作原理和基本特征

    通过模拟大脑神经网络处理、记忆信息的方式来进行信息处理,是现代神经科学研究成果基础上提出的一种非线性、自适应信息处理系统。人工神经网络在工程与学术界被广泛应用,成为涉及
    的头像 发表于 07-04 13:08 1140次阅读

    人工智能和人工神经网络有什么区别

    人工智能是一门研究如何使计算机模拟人类智能行为的学科。它起源于20世纪40年代,当时计算机科学家们开始尝试开发能够模拟人类思维过程的计算机程序。人工智能的目标是通过计算机程序实现对人类智能的模拟,包括感知、学习、推理、规划、交
    的头像 发表于 07-04 09:39 1070次阅读

    人工智能神经网络的结构是什么

    人工智能神经网络是一种模拟人脑神经网络的计算模型,其结构和功能非常复杂。 引言 人工智能神经网络是一种模拟人脑
    的头像 发表于 07-04 09:37 481次阅读

    神经网络人工智能的关系是什么

    神经网络人工智能的关系是密不可分的。神经网络人工智能的一种重要实现方式,而人工智能则是神经网络
    的头像 发表于 07-03 10:25 972次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络
    的头像 发表于 07-03 10:12 1051次阅读

    神经网络算法的基本原理

    年代,当时科学家们开始研究人脑的工作原理。1943年,Warren McCulloch和Walter Pitts提出了一种简单的神经网络模型,即MP模型,它由一系列逻辑门组成,可以模拟神经元的兴奋和抑制状态。1958年,Fran
    的头像 发表于 07-03 09:44 793次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 3060次阅读

    人工神经网络的含义和用途是

    人工神经网络(Artificial Neural Networks,简称ANNs)是一种受生物神经网络启发而构建的数学模型,它通过模拟人脑神经元的连接和信息传递方式来实现对复杂数据的处
    的头像 发表于 07-02 10:07 727次阅读

    人工神经网络的工作原理是什么

    人工神经网络(Artificial Neural Networks,简称ANNs)是一种模拟人脑神经网络的计算模型,它通过大量的简单计算单元(神经元)和它们之间的连接(突触)来实现对复
    的头像 发表于 07-02 10:06 968次阅读

    人工神经网络的模型及其应用有哪些

    人工神经网络(Artificial Neural Networks,ANNs)是一种受生物神经网络启发的计算模型,它通过模拟人脑神经元的连接和交互来实现对数据的学习和处理。自20世纪4
    的头像 发表于 07-02 10:04 887次阅读