0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

还在用Matplotlib? 又一可视化神器Altair登场

电子工程师 来源:lq 2019-05-11 09:43 次阅读

【导语】如何将我们的数据以更好的形势呈现出来?擅长不同编程语言的程序员会选择各自技术范畴内成熟、好用的工具包,比如 R 语言的开发者最常使用的是 ggplot2,但它不支持 Python;以前 Python 语言的开发者使用最多的是 matplotlib,一个很强大的可视化库,不过它的局限也非常严重,制作交互式图表也是一件难事。今天要给大家推荐一个新的工具——Altair,一个 Vega-Lite 的包装器,也许这些概念你都还不没了解过,接下来我们就在下面的文章为大家作介绍。

ggplot2 是 R 的作图工具包,可以使用非常简单的语句实现非常复杂漂亮的效果。然而不幸的是,ggplot2 并不支持 Python。

在 Python 中,我们常使用 matplotlib 用于可视化图形,matplotlib是一个很强大的可视化库,但是它有着很严重的局限性。matplotlib 的使用非常灵活,这可以说的上是它的一个优点,但是当我们想为图形加一个小小的功能的时候,它的繁琐操作会让我们举步维艰。除此之外,matplotlib 的两种界面(面向对象界面、基于状态的界面)令人相当困惑,对于新手很不友好。即使对于多年使用 matplotlib 的人而言,他们也无法完全掌握这些操作。最后不得不说的是,用 matplotlib 制作交互式图表是一件相当困难的事情。

Altair 和图形语法

Altair 是 Vega-Lite 的包装器。Vega-Lite 是 JavaScript 的高级可视化库,它最最重要的特点是,它的API是基于图形语法的。

什么是图形语法呢?图形语法听起来有点像一个抽象的功能,值得注意的是,它是 Altair 和其他 Python 可视化库之间最主要的区别。Altair 符合我们人类可视化数据的方式和习惯,Altair 只需要三个主要的参数

Mark.数据在图形中的表达形式。点、线、柱状还是圆圈?

Channels.决定什么数据应该作为x轴,什么作为y轴;图形中数据标记的大小和颜色。

Encoding.指定数据变量类型。日期变量、量化变量还是类别变量?

基于以上三个参数,Altair 将会选择合理的默认值来显示我们的数据。

Altair 最让人着迷的地方是,它能够合理的选择颜色。如果我们在 Encoding 中指定变量类型为量化变量,那么 Altair 将会使用连续的色标来着色(默认为 浅蓝色-蓝色-深蓝色)。如果变量类型指定为类别变量,那么 Altair 会为每个类别赋予不同的颜色。(例如 红色,黄色,蓝色)

补充:Vega-Lite 有两种类型的类别变量:名义变量和序数变量。名义变量的集合中,各元素的排序阶数没有任何实际意义,例如大陆集合是欧洲,亚洲,非洲,美洲,大洋洲,他们的次序没有任何数值上的意义;序数变量的集合中,各元素的排序阶数是有实际意义的,例如亚马逊的评论可以是一星,二星,三星,四星或五星,星级的高低次序是由意义的。

让我们来看一个具体的例子,如下所示,我们组织了6个国家和它们所对应的人口数据,除此之外,还有相应的收入数据:

import pandas as pdimport altair as altdata = pd.DataFrame({'country_id': [1, 2, 3, 4, 5, 6], 'population': [1, 100, 200, 300, 400, 500],'income':[1000,50,200,300,200,150]})

首先我们绘制每个国家的人口数据:

首先我们绘制每个国家的人口数据:"""As we mentioned before, we need to define 3 parameters: 1. Mark: We do this by using "mark_circle". 2. Channel: We only define an x-axis and we map it to the population. 3. Encodings: We define both variables as quantitative by using :Q after the column name"""categorical_chart = alt.Chart(data).mark_circle(size=200).encode( x='population:Q', color='country_id:Q')

从上图可以看出,Altair 选择了连续色标,在本例中这是没有意义的。问题的根源在于,我们将 country_id 定义为量化变量,而实际上,它应该是一个类别变量,修改代码如下:

# We changed color='country_id:Q' to color='country_id:N' to indicate it is a nominal variablecategorical_chart = alt.Chart(data).mark_circle(size=200).encode( x='population:Q', color='country_id:N')

从图中可以看到,每个国家都用了不同的颜色表示。我们仅仅改变了变量 country_id 的编码,即用 N (Nominal 名义变量)替换了 Q (Quantitative 量化变量)。这点小小的改变就足以使得 Altair 明白,它不该使用连续色标,而是使用独立色标。

图表的扩展

Altair 的另一个美妙之处就是,我们可以从现有的图表中创建新的图表。例如,我们现在要加入新的数据 income,我们唯一需要做的就是告诉 Altair:用 income 作为y轴,代码如下所示:

categorical_chart = alt.Chart(data).mark_circle(size=200).encode( x='population:Q', y='income:Q', color='country_id:N')

如果想添加数据提示的功能(tooltip,鼠标悬停在数据上时,会显示该数据的详细信息),只需要增加一行代码:

categorical_chart = alt.Chart(data).mark_circle(size=200).encode( x='population:Q', y='income:Q', color='country_id:N', tooltip=['country_id', 'population', 'income']))

Altair 的迷人之处

在接触 Altair 之前,我们常常持有一种的怀疑态度:这些可视化工具的包装器真的好用吗?通常来讲,包装是一个坏主意,就拿 ggplot2 来说,它的很多包装器都没有被 Python 社区广泛采用。这些包装器很难创建功能完整的版本,而且它们的更新也常常不及时。然而 Altair 却不一样:

Altair 的 API 非常全面。这就要感谢 Jake Vanderplas(JVP)伟大的设计,凡是 Vega-Lite 能够做的,Python 就可以做。这是因为 Altair 只是一个 Python API,它能够生成有效的 Vega-Lite jsons,而 API 是以编程的方式生成的,因此在 Vega-Lite 的新版本发布后,Altair 能够全面而且快速的更新,这一切都显得如此美妙。

直观且具有符合 Python 习惯的接口。就像使用其他的 Python 库一样,我们需要一些时间来习惯。但 Altair 的精彩之处在于,它所有的设置都符合人类的推理方式,这样我们就能很快的了解它内部的运作原理,并且因此而变得高效。

互动性强。Vega-Lite 交互性非常强大,我们不仅能够使用一行代码来添加 tooltips,还能将图的选择区与另一个可视化图关联。

高度灵活性。Altair的marks可以理解为图表构建中的模块。如下图所示,我们用圆圈标记、线标记和文本标记的组合来构建一个图。最终的代码可读性强,而且易于修改,这对于 matplotlib 来说是很难的。

有点很多,同时也存在一些不足

Altair 的主要缺点

没有 3d 绘图。如果3d可视化对您的工作很重要,那么 Altair 不太适合您。

Altair 不是 D3.js。就像许多的高级可视化框架一样,Altair 也不是 100% 可定制的,在某些时候,我们会遇到一些无法用Altair制作的图表。(注:D3.js 是一个 JavaScript 库,用于在 Web 浏览器中生成动态的交互式数据可视化。 它利用了广泛实施的 SVG,HTML5 和 CSS 标准,具有高度的可定制性)

统计支持较差。如果需要对数据进行线性回归的话,还是推荐用 Seaborn 来进行快速可视化。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 可视化
    +关注

    关注

    1

    文章

    1182

    浏览量

    20902
  • python
    +关注

    关注

    56

    文章

    4784

    浏览量

    84480
  • Altair
    +关注

    关注

    0

    文章

    18

    浏览量

    10002

原文标题:还在用Matplotlib? 又一可视化神器Altair登场 | 技术头条

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    可视化MES系统软件

    是关键部分,可视化管理可帮助企业更直观的挖掘隐藏的数据并有效管理企业。“制造物联”是MES系统软件更高阶段的必然表现形式。“制造物联”与MES系统软件的侧重:(1)MES侧重生产业务管理,制造物联更关注
    发表于 11-30 19:55

    matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习散点(二次函数+noise)并优化修正并且将输出结果可视化

    TF之NN:matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习散点(二次函数+noise)并优化修正并且将输出结果可视化
    发表于 12-21 10:48

    数据可视化之Python-matplotlib概述

    数据可视化(二):Python-matplotlib
    发表于 07-22 14:58

    如何把AD中非可视化区域物件移到可视化区域?

    AD中非可视化区域物件怎么移到可视化区域???
    发表于 09-10 05:36

    基于STM的可视化门禁系统

    基于STM的可视化门禁系统
    发表于 03-07 09:49

    基于stm的可视化门禁系统

    基于stm的可视化门禁系统
    发表于 03-11 09:23

    Python数据可视化

    Python数据可视化:网易云音乐歌单
    发表于 07-19 08:30

    三维可视化的应用和优势

    ,为此三维可视化运维系统登场了。  三维可视化的应用  宏观场景可视化:在特定的环境中对随着时间推移而不断变化的目标实体进行检测,可以直观、灵活、逼真的展示所处区域的情景和环境,可以快
    发表于 12-02 11:52

    常见的几种可视化介绍

    说说常见的几种可视化、信息可视化信息可视化就是对抽象数据进行直观视觉呈现的研究,抽象数据既包含数值数据,也包含非数值数据如文本信息、地图信息等,它们可通过利用图形图像处理、人机交互、
    发表于 07-12 07:49

    经验分享|BI数据可视化报表布局——容器

    容器功能是种用于数据可视化图表排版的功能,主要作用对图表进行有效的布局调整,或者用于巧妙在同地方安排多个不同类型的数据可视化图表,供使用者点击切换浏览。目前,在奥威BI软件上
    发表于 03-15 17:10

    keras可视化介绍

    keras可视化可以帮助我们直观的查看所搭建的模型拓扑结构,以及模型的训练的过程,方便我们优化模型。 模型可视化又分为模型拓扑结构可视化以及训练过程可视化。 以上
    发表于 08-18 07:53

    可视化技术有哪些

    完整的地理空间信息可视化概念主要包括科学计算可视化、数据可视化和信息可视化可视化技术作为解释大量数据最有效的手段而率先被科学与工程计算领域
    发表于 02-05 09:09 3749次阅读

    相比Matplotlib 可视化神器Altair登场

    语言的开发者使用最多的是 matplotlib个很强大的可视化库,不过它的局限也非常严重,制作交互式图表也是件难事。
    的头像 发表于 05-23 14:49 2895次阅读
    相比<b class='flag-5'>Matplotlib</b> <b class='flag-5'>可视化</b><b class='flag-5'>神器</b><b class='flag-5'>Altair</b><b class='flag-5'>登场</b>

    使用Python来收集、处理和可视化人口数据

    数据分析和可视化: pandas:个提供高性能、易用的数据结构和数据分析工具的库。 requests:个简洁、优雅的HTTP库,用于发送网络请求和获取数据。 matplotlib
    的头像 发表于 06-21 17:08 1343次阅读
    使用Python来收集、处理和<b class='flag-5'>可视化</b>人口数据

    Altair个漂亮易用的数据可视化

    Altair个基于Jupyter Notebook的强大可视化库。它提供了强大而简洁的可视化语法,使我们能够快速构建各种统计可视化图表
    的头像 发表于 10-21 10:43 888次阅读
    <b class='flag-5'>Altair</b>:<b class='flag-5'>一</b>个漂亮易用的数据<b class='flag-5'>可视化</b>库