0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI反学习或将揭开人类梦境的奥秘

电子工程师 来源:YXQ 2019-05-14 09:57 次阅读

近日,多伦多大学的教员、谷歌大脑(Google Brain)研究员杰弗里·辛顿(Geoffrey Hinton)发表了炉边谈话。他讨论了神经网络的起源,以及人工智能有朝一日可能像人类一样推理的可行性和意义。

辛顿被一些人称为“人工智能教父”,他在过去30年里一直致力于解决人工智能面临的一些最大挑战。除了在机器学习方面的开创性工作以外,他还撰写以及与他人合作撰写了200多篇经过同行评议的论文,其中包括1986年发表的一篇关于机器学习技术(被称为反向传播学习算法)的论文。

他普及了深度神经网络的概念,即包含上述功能的人工智能模型,它们被安排在相互连接的层中,传输“信号”并调整连接的突触强度(权重)。通过这种方式,人工智能模型从输入数据中提取特征,并学习做出预测。

辛顿坦言,创新的速度甚至让他自己都感到惊讶。“在2012年,我没想到5年以后,我们就能够使用相同的技术来在多种语言之间进行翻译。”

尽管如此,辛顿认为目前的人工智能和机器学习方法都有其局限性。他指出,大多数的计算机视觉模型都没有反馈机制,也就是说,它们不会试图从更高层级的表征重建数据。相反,它们试图通过改变权重来有区别地学习特征。“它们并没有在每一层的特征探测器上检查是否能够重建下面的数据。”辛顿说道。

他和同事们最近转向人类视觉皮层来寻找灵感。

辛顿说,人类的视觉采用了一种重建的方法来学习,事实证明,计算机视觉系统中的重建技术增强了它们对对抗攻击的抵抗力。

“大脑科学家都同意这样的观点,如果你的大脑皮层有两个区域处于感知通路中,并且相互连接,那么总有一个反向通路。”辛顿表示。

需要说明的是,辛顿认为,神经科学家需要向人工智能研究人员学习很多东西。事实上,他觉得未来的人工智能系统将主要是非监督式的。他说,非监督式学习——机器学习的一个分支,从未标记、无法归类和未分类的测试数据中收集知识——在学习共性和对潜在的共性做出反应的能力方面,几乎就像人类一般。

“如果你用一个有数十亿个参量的系统,在某个目标函数中实施梯度下降,它的效果会比你想象的好得多……规模越大,效果越好。”他说,“相比于让大脑计算某个目标函数的梯度,并根据梯度更新突触的强度,这要更加合理。我们只需要弄清楚它是如何得到梯度的以及目标函数是什么。”

这甚至可能会解开梦的奥秘。“为什么我们根本不记得我们的梦呢?”辛顿反问道。他认为这可能与“反学习”有关。

辛顿说,“做梦的意义可能在于,你把整个学习过程颠倒过来。”

在他看来,这些知识可能会完全改变一些领域,比如教育。例如,他预计,未来的课程将更加个性化,有更强的针对性,将把人类生物化学过程考虑进来。

“你可能会认为,如果我们真正了解大脑的运转机制,我们应该能够改善教育等方面的状况,我认为我们会做到的。”辛顿称,“如果你能最终了解大脑发生了什么,它是如何学习的,而不是没有去进行调整适应,取得更好的学习效果,那会令人费解。”

他警告说,实现这一点尚需时日。就近期而言,辛顿设想了智能助手的未来——比如谷歌的Google Assistant或亚马逊的Alexa——它们可以与用户互动,并在日常生活中给他们提供各种指导。

“未来几年,我不确定我们能否从智能助手那里学到很多东西。但如果你仔细观察,你会发现现在的智能助手相当聪明,一旦它们真的能听懂对话,它们就能和孩子们交谈,并对他们进行教育。”辛顿总结道。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100526
  • AI
    AI
    +关注

    关注

    87

    文章

    30095

    浏览量

    268365

原文标题:AI教父杰弗里辛顿:AI反学习可能揭开人类梦境的奥秘

文章出处:【微信号:smartman163,微信公众号:网易智能】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习AI大模型的基础 技术支撑 :深度学习
    的头像 发表于 10-23 15:25 355次阅读

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    了传统学科界限,使得科学家们能够从更加全面和深入的角度理解生命的奥秘。同时,AI技术的引入也催生了一种全新的科学研究范式,即数据驱动的研究范式,这种范式强调从大量数据中提取有价值的信息,从而推动科学研究
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    for Science的技术支撑”的学习心得,可以从以下几个方面进行归纳和总结: 1. 技术基础的深入理解 在阅读第二章的过程中,我对于AI for Science所需的技术基础有了更加深入的理解。这一章详细阐述了
    发表于 10-14 09:16

    探索HTTP海外访问的奥秘:解锁全球互联网资源

    探索HTTP海外访问的奥秘,实际上是在揭开如何高效、安全地解锁全球互联网资源的面纱。
    的头像 发表于 09-24 08:11 238次阅读

    基于瑞萨电子Reality AI Tools工具的语音欺骗应用示例

    探索使用瑞萨电子硬件和AI软件平台的Reality AI Tools语音欺骗应用示例。
    的头像 发表于 08-20 15:13 415次阅读
    基于瑞萨电子Reality <b class='flag-5'>AI</b> Tools工具的语音<b class='flag-5'>反</b>欺骗应用示例

    深度学习卷积的原理和应用

    像分割、图像重建和生成对抗网络(GANs)等,卷积展现出了其独特的优势和广泛的应用前景。本文详细探讨深度学习中的卷积技术,包括其定义、原理、实现方式、应用场景以及与其他上采样方法
    的头像 发表于 07-14 10:22 1332次阅读

    Elon Musk惊人预言:AI全面取代人类工作

    行业芯事行业资讯
    深圳市浮思特科技有限公司
    发布于 :2024年05月28日 15:55:37

    马斯克预测明年2026年AI超越最聪明的人类

    马斯克认为,如果 AGI 界定为超越最聪明的人类智力水平,那么这可能发生在明年两年内。AGI 研究务求打造出具备类似人类般的智能决策与自学能力的软件,如今已成为了人工智能领域的重要
    的头像 发表于 04-09 15:52 450次阅读

    AI世界中“光模块的奥秘”:解读光纤世界的神奇

    光模块在光纤世界中的奥秘
    的头像 发表于 04-03 17:42 1129次阅读
    <b class='flag-5'>AI</b>世界中“光模块的<b class='flag-5'>奥秘</b>”:解读光纤世界的神奇

    FPGA在深度学习应用中取代GPU

    AI 框架模型映射到硬件架构。 Larzul 的公司 Mipsology 希望通过 Zebra 来弥合这一差距。Zebra 是一种软件平台,开发者可以轻松地深度学习代码移植到 F
    发表于 03-21 15:19

    富士通发布最新的人工智能(AI)战略,聚焦深化人类AI之间的协作

    富士通株式会社(以下简称“富士通”)发布了最新的集团人工智能(AI)战略,聚焦深化人类AI之间的协作,并提出了AI作为“可信赖的助手”这
    的头像 发表于 02-21 17:09 736次阅读
    富士通发布最新的人工智能(<b class='flag-5'>AI</b>)战略,聚焦深化<b class='flag-5'>人类</b>与<b class='flag-5'>AI</b>之间的协作

    AI算法的本质是模拟人类智能,让机器实现智能化

    视觉等领域。   AI 算法的核心是实现智能化的决策和行为   AI算法的本质在于模拟人类智能的能力,让计算机能够对现实世界进行模拟和模仿,从而达到智能化的目的。具体来说,AI算法可以
    的头像 发表于 02-07 00:07 5608次阅读

    奥特曼称相信AI无法替代人类

    奥特曼称相信AI无法替代人类 AI对于人类的威胁一直有很多讨论,各有不同观点,很多人对于科幻电影中的场景AI机器人伤害
    的头像 发表于 01-19 11:43 846次阅读

    AI数字员工的出现:不是取代,而是让技术更好地服务于人类

    在人工智能技术迅猛发展的今天,AI数字员工的出现成为了企业和组织关注的热点。与传统观念中的机器人自动化设备不同,AI数字员工是集成了最新AI技术,如自然语言处理、机器
    的头像 发表于 12-29 10:27 399次阅读
    <b class='flag-5'>AI</b>数字员工的出现:不是取代,而是让技术更好地服务于<b class='flag-5'>人类</b>

    什么是AI运算?AI是如何运算的呢?

    AI是计算机科学的分支领域,专注在创建拥有人类智能行为的系统机器,其目标为模拟人类的各种认知功能,包含学习、推理、解决问题、感知、语言理解
    发表于 12-12 13:56 2580次阅读