0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

四大关键助力 AI重新定义未来的可能性

mK5P_AItists 来源:fqj 2019-05-15 17:03 次阅读

随着科技的不断发展,一些在功能上具有相互补充作用的技术正在不可避免地发生结合——例如,人工智能AI)和物联网IoT)。

由于物联网的快速发展,企业可以使规模庞大的设备或“事物”实现网络连接和数据共享,并能够通过数据分析获取收益。由于AI能够从海量物联网数据中“学习”,从而快速作出决策并揭示深刻见解,因此对于任何希望扩展物联网价值的企业而言,AI都是一种必不可缺的分析能力。

在本文中,我们将探讨AI和物联网(即AIoT)如何共同为各行各业的组织创造新价值。

一、IoT-连接的艺术

1.万物互联的迅速崛起

1982年,卡内基梅隆大学将可乐机改装成为世界首个可连接的智能设备,该设备能够报告其库存情况以及新储存的饮料是否冰凉。几十年后的今天,我们生活在一个物联网多于人联网的世界里。不但如此,Business Insider Intelligence预计,到2025年,物联网设备将超过550亿,远高于2017年的90亿。

快速扩张的物联网技术将便携式设备、家用电器、汽车、制造设备和其他嵌入电子设备、软件、传感器和执行器相连接,从而组成一张巨大的物联网网络, 并能相互进行数据交换。从消费类可穿戴设备,到工业机器和重型机械,这些相互连接的“物”可以向环境发出信号、能够被远程操纵和控制,并且能越来越多地自主做出决策并执行。

目前来看,物联网几乎无处不在。它可以是一个家庭自动化系统,通过检测环境的改变自动调整恒温器或照明设备;它也可以是生产设备,能够及时提醒维护技术人员即将发生的故障;它还可以是车载导航系统,能够检测用户的位置并提供环境方向感知……此外,物联网还有很多应用案例,例如,用户可以将具有语音识别的设备作为个人数字助理,商业车队通过配备传感器来传达动态等等。

这个由相互连接的设备、人员和环境组成的生态系统产生了大量复杂的数据。例如,今天的汽车和卡车就像建立在车轮上的数据中心,大量配备的传感器可以监控从轮胎压力到发动机性能、部件健康状况、无线电音量、驾驶员动作——甚至是挡风玻璃上是否有障碍物或雨点等状态数据。一辆联网的汽车每小时能输出大约25GB的数据,而自动驾驶汽车每秒甚至可以输出多达1GB的数据。

然而,连接和交换大量数据只是物联网故事的开始。

2.从收集数据到智能连接

智能连接设备一般由四层组成:

物理元件,如机械和电气部件。

智能元件,如传感器,处理器,存储和软件。

连接元件,如端口天线和协议。

自主分析,可以在边缘训练和运行AI模型。

智能元件放大了物理元件的作用。智能元件反过来又被连接元件放大,从而实现监监测、控制和优化。但就其本身而言,仅仅将事物进行联接并不会促进学习。连接为进一步的学习铺平了道路,但也只是基础。

在最底层的应用方面,物联网设备生成的数据可以被用于触发简单的警报。例如,如果传感器检测到超出阈值的情况,比如过热或振动,它就会触发警报,通知技术人员进行检查。而在一个更复杂的物联网系统中,则可能有几十个传感器监控到事物的方方面面。

正是这些应用场景为设备的连接增加了价值,但是物联网的真正价值在于另一个更复杂的层次,这些价值会在物联网设备能够进行学习并自主决策时体现出来。

例如,使用物联网数据检测故障的模型可以将机器控制推送给适合的由物联网驱动的执行器,以减少类似设备发生故障的可能性;自动驾驶车辆也可以将他们的经验传递给网络中的其他车辆。

这些功能是物联网应用程序个性化需求的基础:

作为人类,我们希望得到智能设备的单独对待,从而需要它们了解我们的习惯、行为模式和偏好。例如,可穿戴技术应该考虑监测运动员的动作,并在检测到其将受伤时发出信号。因为没有两个人的移动会完全相同,所以应用程序只有具备更好的个性化才有意义。

再例如,零售商可以使用由物联网技术支持的相机进行物体检测以及机器学习,以便在适当的时刻向购物者提供量身定制的广告和优惠。

随着机器变得越来越复杂,个性化的需求也变的越来越迫切。例如,相同品牌和型号的两件工业设备在不同条件下的性能可能不同,以相同的方法对待它们可能会错失提高运营效率、提高安全性和更好地利用资源的机会,因此需要以不同的方式进行使用。

再例如,通过机器学习可以帮助操作人员确定特定生产运行的最佳机器集合,从而在车间内做出更好的决策。

二、AI-无所不在的构建智能

1. AI的演变

AI是一门通过学习和自动化来模拟人类任务的训练系统的科学。借助嵌入式AI,机器可以不断适应新的输入并从经验中学习,还能在没有人工干预的情况下完成特定的任务。目前来看,AI已被广泛应用于面部识别、语音识别和在游戏中击败人类国际象棋、围棋冠军。

AI诞生于上世纪50年代,但直到最近几年随着物联网数据量、高速连接和高性能计算的爆炸式增长,它才真正在主流应用中占据了一席之地。

现阶段,AI主要使用的是各种统计和计算技术。机器学习是AI的一个子集,它可以识别来自智能传感器和设备数据中的模式和异常。随着时间的推移,机器学习算法可以通过“学习”提供更准确的结果。因此,机器学习优于传统的商业智能工具,并且相较基于规则、阈值或计划的系统能够更快、更准确地进行操作预测。

深度学习计算机视觉,自然语言处理以及经过时间考验的预测或优化中的机器学习等技术使AI成为了物联网不可或缺的重要补充。例如,AI可以将信号从噪声中分离出来,从而产生了先进的物联网设备,它还可以从与用户、服务提供商和生态系统中的其他设备的交互中学习。

图1:AI的演变

2.AI的潜力

通过AI连接的智能设备和环境可以从更大的数据源网络(包括彼此)中学习,并有助于提高整体的智能化水平。各行各业中已经存在很多案例可以证明这种潜力:

公用事业和制造商可以检测表现不佳的资产,并能在发生代价高昂或危险的设备故障之前进行预测性维护或自动关闭。

数字孪生是对真实世界的虚拟模拟,它能够使工程师和操作人员分析现场设备的性能,同时最大限度地降低传统测试方法的成本和安全问题。

零售商可以使用基于位置和环境感知的技术来检测店内情况,并将其与其他数据(如在线用户配置文件和店内库存)相结合,可以在客户进入商店时发送实时个性化优惠。

无人机可以用以及时了解互联网或GPS无法到达的黑暗、闭塞的环境中的未知情况,并能用来调查如海上作业、地雷、战区或燃烧的建筑物等危险区域。

机器人可以自主穿过仓库的过道,从货架上挑选零件或货物并将它们运送到正确的位置,并能避免沿途发生碰撞。协作机器人(“cobots”)可以与人类一起工作,从事繁重的搬运、舞台材料的组装或完成重复性的任务和动作。

集装箱和牵引拖车可以监测温度、湿度、光照、重量分布、二氧化碳和氧气水平等条件,以保持负载的完整性,加快交货和检查的速度。

远程监控设备可以提供家庭诊断,在需要干预时提醒护理人员,并提醒患者服用药物。

城市可以在实体基础设施中部署连接的传感器,以不断监测能源效率、空气污染、用水、交通状况和其他生活质量因素。

四大关键助力 AI重新定义未来的可能性

图2:工业AI驱动的物联网应用

这种自适应、预测和“学习”的能力在工业物联网(IIoT)中尤其重要,因为系统故障和停机可能会导致危及生命或高风险的情况发生。

三、AI和物联网成功的四个关键

除了传感器、摄像头、网络基础设施和计算机等智能物联网的物理基础设施外,还有一些要素是成功部署的关键:

思考并实时分析。使用事件流处理来分析运动中的各种数据,并确定哪些是最相关的。

能够在云端、网络边缘或设备本身等应用程序最需要的地方部署智能。

结合AI技术。对象识别或处理自然语言等AI功能具有非常高的价值,并能在协同作用中发挥关键作用。

统一完整的分析生命周期,对数据进行流化、过滤、评分、存储相关内容、分析并使用结果持续改进系统。

1.实时分析

事件流处理在处理物联网数据时起着至关重要的作用,因为它能够:

检测感兴趣的事件并触发适当的操作。事件流可以处理实时精确定位中的复杂模式,例如它可对个人移动设备的操作或银行交易期间的异常活动进行快速检测。

监控汇总信息。事件流可以持续处理来自监控设备和传感器的数据,查找出可能存在问题的趋势、相关性或异常。智能设备可以采取补救措施,例如通知操作员、移动负载或关闭电机

清理并验证传感器数据。当传感器数据延迟、不完整或不一致时,可能是由于许多因素共同作用导致的。嵌入到数据流中的各种技术可以检测并解决此类数据问题,还能对即将发生的传感器故障或网络错误导致的脏数据进行清洗。

实时预测和优化运营。高级算法可以持续对流数据进行评分,以便在瞬间做出决策。例如,可以在数据环境中分析有关火车的到达信息,并延迟另一趟火车的出发时间,以保证乘客不会错过换乘。

2.在应用程序需要的地方部署智能

前面描述的案例需要不断变化和移动的数据(例如自动驾驶车辆内驾驶员的地理位置或温度)以及其他离散数据(例如客户概况和历史购买数据)。这一现实要求分析以不同的方式应用于不同的目的。例如:

高性能分析可以对静态、云端或存储中的繁重数据进行高效处理。

流分析可对运动中的大量不同数据进行分析,这些数据中可能只有少量是我们需要的并只有短暂的价值,因此速度十分重要,例如发送有关即将发生的碰撞或组件故障的警报。

边缘计算使系统能够在源头立即对数据进行操作,而无需暂停获取、传输或存储数据。

在应用程序需要的地方部署智能是一种多相分析方法,要记住的关键原则是,并非所有数据点都是相关的,也不是所有数据点都需要发送并永久存储。分析基础架构必须灵活且可扩展,以支持当前和未来的所有需求。

3.协同AI技术

要用AIoT实现最高的回报,除了部署单一的AI技术外,还需要考虑其他方面。例如,可以采用多种AI功能协同工作的平台,将机器学习与自然语言处理和计算机视觉等进行协同工作。

举例来看,一家大型医院的研究诊所结合了多种形式的AI,为其医生提供诊断指导。该诊所使用深度学习和计算机视觉对x线片、CT扫描和核磁共振成像进行识别,以确定结节和其他与人类大脑和肝脏有关的区域。该检测过程使用深度学习技术和卷积神经网络,这是一类通常用于分析视觉图像的机器学习。这种检测过程使用到了深度学习技术和卷积神经网络,卷积神经网络是一种通常用于分析视觉图像的机器学习。

然后,该诊所使用一种完全不同的AI技术——自然语言处理,建立一个基于家庭病史、药物、既往疾病和饮食的患者档案,它甚至可以解释心脏起搏器等物联网数据。该工具将自然语言数据与计算机视觉相结合,使医务人员在宝贵的工作时间内工作效率大大提高。

四大关键助力 AI重新定义未来的可能性

图3:物联网分析生命周期——流式传输、过滤、评分和存储

4.统一完整的分析生命周期

为了从互联的世界中获得价值,AIoT系统首先需要访问各种不同的数据来感知正在发生的重要事项。接下来,它必须从丰富的数据环境中提取对数据的理解。最后,无论是提醒操作员、提供报价还是修改设备操作,它都必须得到快速的结果。

成功的物联网实施将在整个分析生命周期中链接这些支持功能:

动态数据分析,这是前面描述的事件流处理部分。事件流处理以非常高的速率(在每秒数百万的范围内)分析大量数据,并以极低的延迟(以毫秒为单位)分析数据,事件流处理以极高的速率(以每秒数百万计)、极低的延迟(以毫秒为单位)分析大量数据,以识别感兴趣的事件。

实时决策/实时交互管理。可将感兴趣事件的流数据推入可正确决策或行动的推荐引擎,例如汽车不断变化的位置、方向、目的地、环境等。

大数据分析。从物联网设备获取智能首先需要具备能够从分布式计算环境中快速获取和处理大量数据的能力,并能够运行更多的迭代以使用所有的数据,从而提高模型的准确性。

数据管理。物联网数据可能太少、太多,而且肯定会以多种格式出现,因此必须进行集成和协调。可靠的数据管理可以从任何地方获取物联网数据,并使其干净、可信,为下一步分析做好准备。

分析模型管理。模型管理提供从注册到退休的整个分析模型生命周期的基本治理。这确保了模型管理方式的一致性,并确保性能不会随着时间的推移而降低。

结语:AI和物联网将重新定义可能性

具有数千个连接点的高性能物联网设备和环境正在网络中扩散,不断下降的硬件成本使得将传感器和连接性嵌入任何东西都成为可能。计算机、光速通信和分析技术的进步,使得在网络边缘等任何需要的地方都能创造出由AI驱动的智能。

这些技术共同开创了一个物联网的新时代,将像“万维网”或“互联网连接”一样真正的改变我们的生活。

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46845

    浏览量

    237528

原文标题:AIoT重磅报告:四大关键助力,AI+IoT重新定义未来的可能性

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ICY DOCK M.2转U.2 SSD转接盒如何重新定义M.2 NVMe SSD

    ICY DOCK M.2转U.2 SSD转接盒如何重新定义M.2 NVMe SSD
    的头像 发表于 10-21 18:08 215次阅读
    ICY DOCK M.2转U.2 SSD转接盒如何<b class='flag-5'>重新定义</b>M.2 NVMe SSD

    AI如何对产品设计带来更多的可能性

    AI(人工智能)对产品设计带来了广泛而深远的可能性,这些可能性主要体现在以下几个方面 1.创新设计的激发 创意生成:AI能够学习和模仿人类设计师的创作过程,通过深度学习等技术生成全新的
    的头像 发表于 10-15 11:29 197次阅读

    医疗AR眼镜,重新定义远程会诊体验

    【AR眼镜:重新定义远程会诊体验】 在快速发展的医疗领域,安宝特医疗AR眼镜以其尖端技术和创新功能,引领远程会诊的未来,致力于为为医生和患者带来更高效、精准和无缝的医疗体验。 探索安宝特医疗AR眼镜
    的头像 发表于 09-10 10:57 235次阅读

    新思科技探索AI+EDA的更多可能性

    芯片设计复杂的快速指数级增长给开发者带来了巨大的挑战,整个行业不仅要向埃米级发展、Muiti-Die系统和工艺节点迁移所带来的挑战,还需要应对愈加紧迫的上市时间目标、不断增加的制造测试成本以及人才短缺等问题。早在AI大热之前,芯片设计行业就把目光放到了
    的头像 发表于 08-29 11:19 471次阅读

    ADI携手骏龙科技推出“重新定义精度”仪器仪表专题活动

    重磅来袭!ADI 携手 骏龙科技 推出“重新定义精度”仪器仪表专题活动,涵盖 环境测量/监测、精密密测量/数据采集、射频测试、DPS/PMU及Switch/MUX 等四大应用及其热门产品,更有具体的参考设计、应用笔记和模块级解决方案等超级干货。快来一起学习充电,赢取好礼吧
    的头像 发表于 08-22 16:35 655次阅读

    AIGC全面进化,未来的“创意”与“灵感”是否需要被重新定义

    刻地触动了我们对“创意”与“灵感”的传统认知。在这一背景下,探讨未来的“创意”与“灵感”是否需要被重新定义,无疑成为一个亟待深思的议题。 AIGC,即人工智能生成内容(Artificial Intelligence Generated Content),是指利用人工智能技
    的头像 发表于 07-01 13:28 220次阅读

    黄仁勋:人工智能和加速计算的交汇将重新定义未来

    COMPUTEX 大会开幕前发表主题演讲,他表示:“生成式 AI 正在重塑行业,并为创新和增长带来新机遇。” “今天,我们正处于计算领域重大转变的最前沿,”黄仁勋表示,“人工智能和加速计算的交汇将重新定义未来。” 6500 多
    的头像 发表于 06-03 17:42 1487次阅读

    AI快讯:华为助力金融行业加速拥抱AI 马斯克xAI 展示首个多模态模型

    数据基础设施峰会上华为正式发布四大AI创新解决方案,包括中心AI、边缘AIAI数据保护、AI
    发表于 04-15 12:32 397次阅读

    瑞萨的40纳米MCU技术正在重新定义嵌入式系统的可能性

    从延长便携式设备电池寿命,到提高处理效率和响应能力,瑞萨的40纳米MCU技术正在重新定义嵌入式系统的可能性
    的头像 发表于 03-11 15:11 454次阅读

    2024年锂电四大材料走势“划重点”

    GGII2023年中国锂电四大关键材料出货量数据及2024年市场走势。
    的头像 发表于 02-21 09:19 2019次阅读
    2024年锂电<b class='flag-5'>四大</b>材料走势“划重点”

    麦科信重新定义高压差分探头,强势来袭!

    麦科信高压差分探头MDP系列是一款基于光隔离探头技术重新定义的高压差分探头。它采用先进的设计理念和工艺技术,具备超低底噪、优秀的幅频特性和业内更高的共模抑制比,可轻松应对各种高频高压信号测试。
    的头像 发表于 01-18 15:06 455次阅读
    麦科信<b class='flag-5'>重新定义</b>高压差分探头,强势来袭!

    墨芯人工智能CEO王维:需要重新定义和设计AI计算机

    AI时代,我们需要重新定义和设计AI计算机。仅依靠硅基的摩尔定律,2年翻一倍的线性增长的算力供给远不能满足指数级增长的需求问题。
    的头像 发表于 01-12 11:12 1027次阅读

    ADUM1200ARZ数字隔离器:重新定义技术标准

    ADUM1200ARZ数字隔离器成为技术进步领域的关键组件。其创新设计和多方面功能重新定义了数字隔离技术的格局,提供了满足不同工业需求的众多功能。让我们通过本文直观的了解ADUM1200ARZ的功能与技术标准。
    的头像 发表于 12-16 11:49 1479次阅读
    ADUM1200ARZ数字隔离器:<b class='flag-5'>重新定义</b>技术标准

    AI重新定义PC体验

    ,用户的终端设备将成为真正的智能助手,以更直观、更无缝的方式融入用户的生活。在PC行业中未来蓬勃发展的企业,将是那些期待AI能够实现集成化、个性化体验的世界级企业。 当前,关于生成式AI的热门讨论聚焦在利用云端来运行、训练、推理
    的头像 发表于 12-06 10:15 505次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>重新定义</b>PC体验

    改变我们生活的锂离子电池 | 第讲:什么是全固态电池?实用化的可能性有多大?

    改变我们生活的锂离子电池 | 第讲:什么是全固态电池?实用化的可能性有多大?
    的头像 发表于 12-05 16:59 995次阅读
    改变我们生活的锂离子电池 | 第<b class='flag-5'>四</b>讲:什么是全固态电池?实用化的<b class='flag-5'>可能性</b>有多大?