0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

神经网络如何正确初始化?

电子工程师 来源:YXQ 2019-05-17 16:32 次阅读

初始化对训练深度神经网络的收敛性有重要影响。简单的初始化方案可以加速训练,但是它们需要小心避免常见的陷阱。

近期,deeplearning.ai就如何有效地初始化神经网络参数发表了交互式文章,图灵君将结合这篇文章与您一起探索以下问题:

1、有效初始化的重要性

2、梯度爆炸或消失的问题

3、什么是正确的初始化?

4、Xavier初始化的数学证明

一、有效初始化的重要性

要构建机器学习算法,通常需要定义一个体系结构(例如Logistic回归,支持向量机,神经网络)并训练它来学习参数。 以下是神经网络的常见训练过程:

1、初始化参数

2、选择优化算法

3、重复这些步骤:

a、正向传播输入

b、计算成本函数

c、使用反向传播计算与参数相关的成本梯度

d、根据优化算法,使用梯度更新每个参数

然后,给定一个新的数据点,您可以使用该模型来预测它的类。

初始化步骤对于模型的最终性能至关重要,它需要正确的方法。 为了说明这一点,请考虑下面的三层神经网络。 您可以尝试使用不同的方法初始化此网络,并观察它对学习的影响。

当初始化方法为零时,对于梯度和权重,您注意到了什么?

用零初始化所有权重会导致神经元在训练期间学习相同的特征。

实际上,任何常量初始化方案的性能表现都非常糟糕。 考虑一个具有两个隐藏单元的神经网络,并假设我们将所有偏差初始化为0,并将权重初始化为一些常数α。 如果我们在该网络中正向传播输入(x1,x2),则两个隐藏单元的输出将为relu(αx1+αx2)。 因此,两个隐藏单元将对成本具有相同的影响,这将导致相同的梯度。

因此,两个神经元将在整个训练过程中对称地进化,有效地阻止了不同的神经元学习不同的东西。

在初始化权重时,如果值太小或太大,关于成本图,您注意到了什么?

尽管打破了对称性,但是用值(i)太小或(ii)太大来初始化权重分别导致(i)学习缓慢或(ii)发散。

为高效训练选择适当的初始化值是必要的。我们将在下一节进一步研究。

二、梯度的爆炸或消失问题

考虑这个9层神经网络。

在优化循环的每次迭代(前向,成本,后向,更新)中,我们观察到当您从输出层向输入层移动时,反向传播的梯度要么被放大,要么被最小化。 如果您考虑以下示例,此结果是有意义的。

假设所有激活函数都是线性的(标识函数)。 然后输出激活是:

其中,L=10,W[1],W[2],…,W[L−1]都是大小为(2,2)的矩阵,因为层[1]到[L-1]有2个神经元,接收2个输入。考虑到这一点,为了便于说明,如果我们假设W[1]=W[2]=⋯=W[L−1]=W,输出预测是y^=W[L]WL−1x(其中WL−1将矩阵W取为L-1的幂,而W[L]表示Lth矩阵)。

初始化值太小,太大或不合适的结果是什么?

情形1:过大的初始化值会导致梯度爆炸

考虑这样一种情况:初始化的每个权重值都略大于单位矩阵。

这简化为y^=W[L]1.5L−1x,并且a[l]的值随l呈指数增加。 当这些激活用于反向传播时,就会导致梯度爆炸问题。 也就是说,与参数相关的成本梯度太大。 这导致成本围绕其最小值振荡。

情形2:初始化值太小会导致梯度消失

类似地,考虑这样一种情况:初始化的每个权重值都略小于单位矩阵。

这简化为y^=W[L]0.5L−1x,并且激活a [l]的值随l呈指数下降。 当这些激活用于反向传播时,这会导致消失的梯度问题。 相对于参数的成本梯度太小,导致在成本达到最小值之前收敛。

总而言之,使用不适当的值初始化权重将导致神经网络训练的发散或减慢。虽然我们用简单的对称权重矩阵说明了梯度爆炸/消失问题,但观察结果可以推广到任何太小或太大的初始化值。

三、如何找到合适的初始化值

为了防止网络激活的梯度消失或爆炸,我们将坚持以下经验法则:

1、激活的平均值应为零。

2、激活的方差应该在每一层保持不变。

在这两个假设下,反向传播的梯度信号不应该在任何层中乘以太小或太大的值。 它应该移动到输入层而不会爆炸或消失。

更具体地考虑层l, 它的前向传播是:

我们希望以下内容:

确保零均值并保持每层输入方差的值不会产生爆炸/消失信号,我们稍后会解释。 该方法既适用于前向传播(用于激活),也适用于反向传播传播(用于激活成本的梯度)。 推荐的初始化是Xavier初始化(或其派生方法之一),对于每个层l:

换句话说,层l的所有权重是从正态分布中随机选取的,其中均值μ= 0且方差σ2= n [l-1] 1其中n [l-1]是层l-1中的神经元数。 偏差用零初始化。

下面的可视化说明了Xavier初始化对五层全连接神经网络的每个层激活的影响。

您可以在Glorot等人中找到这种可视化背后的理论。(2010年)。 下一节将介绍Xavier初始化的数学证明,并更准确地解释为什么它是一个有效的初始化。

四、Xavier初始化的合理性

在本节中,我们将展示Xavier初始化使每个层的方差保持不变。 我们假设层的激活是正态分布在0附近。 有时候,理解数学原理有助于理解概念,但不需要数学,就可以理解基本思想。

让我们对第(III)部分中描述的层l进行处理,并假设激活函数为tanh。 前向传播是:

目标是导出Var(a [l-1])和Var(a [l])之间的关系。 然后我们将理解如何初始化我们的权重,使得:Var(a[l−1])=Var(a[l])。

假设我们使用适当的值初始化我们的网络,并且输入被标准化。 在训练初期,我们处于tanh的线性状态。 值足够小,因此tanh(z[l])≈z[l],意思是:

此外,z[l]=W[l]a[l−1]+b[l]=向量(z1[l],z2[l],…,zn[l][l])其中zk[l]=∑j=1n[l−1]wkj[l]aj[l−1]+bk[l]。 为简单起见,我们假设b[l]=0(考虑到我们将选择的初始化选择,它将最终为真)。 因此,在前面的方程Var(a[l−1])=Var(a[l])中逐个元素地看,现在给出:

常见的数学技巧是在方差之外提取求和。 为此,我们必须做出以下三个假设:

1、权重是独立的,分布相同;

2、输入是独立的,分布相同;

3、权重和输入是相互独立的。

因此,现在我们有:

另一个常见的数学技巧是将乘积的方差转化为方差的乘积。公式如下:

使用X=wkj[l]和Y=aj[l−1]的公式,我们得到:

我们差不多完成了! 第一个假设导致E[wkj[l]]2=0,第二个假设导致E[aj[l−1]]2=0,因为权重用零均值初始化,输入被归一化。 从而:

上述等式源于我们的第一个假设,即:

同样,第二个假设导致:

同样的想法:

总结一下,我们有:

瞧! 如果我们希望方差在各层之间保持不变(Var(a[l])=Var(a[l−1])),我们需要Var(W[l])=n[l−1]1。 这证明了Xavier初始化的方差选择是正确的。

请注意,在前面的步骤中,我们没有选择特定的层ll。 因此,我们已经证明这个表达式适用于我们网络的每一层。 让LL成为我们网络的输出层。 在每一层使用此表达式,我们可以将输出层的方差链接到输入层的方差:

根据我们如何初始化权重,我们的输出和输入的方差之间的关系会有很大的不同。 请注意以下三种情况。

因此,为了避免正向传播信号的消失或爆炸,我们必须通过初始化Var(W[l])=n[l−1]1来设置n[l−1]Var(W[l])=1。

在整个证明过程中,我们一直在处理在正向传播期间计算的激活。对于反向传播的梯度也可以得到相同的结果。这样做,您将看到,为了避免梯度消失或爆炸问题,我们必须通过初始化Var(W[l])=n[l]1来设置n[l]Var(W[l])=1。

结论

实际上,使用Xavier初始化的机器学习工程师会将权重初始化为N(0,n[l−1]1)或N(0,n[l−1]+n[l]2)。 后一分布的方差项是n [l-1] 1和n [1] 1的调和平均值。

这是Xavier初始化的理论依据。 Xavier初始化与tanh激活一起工作。 还有许多其他初始化方法。 例如,如果您正在使用ReLU,则通常的初始化是He初始化(He et al,Delving Deep into Rectifiers),其中权重的初始化方法是将Xavier初始化的方差乘以2。虽然这种初始化的理由稍微复杂一些,但它遵循与tanh相同的思考过程。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4732

    浏览量

    100374
  • 深度学习
    +关注

    关注

    73

    文章

    5456

    浏览量

    120855

原文标题:吴恩达团队:神经网络如何正确初始化?

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    BP神经网络预测模型的建模步骤

    的过程,涉及数据预处理、网络结构设计、权重初始化、前向传播、损失函数计算、反向传播、权重更新、模型评估与优化等多个步骤。以下将详细阐述这些步骤,并探讨在建模过程中需要注意的关键点。
    的头像 发表于 07-11 16:57 1138次阅读

    使用NumPy实现前馈神经网络

    要使用NumPy实现一个前馈神经网络(Feedforward Neural Network),我们需要从基础开始构建,包括初始化网络参数、定义激活函数及其导数、实现前向传播、计算损失函数、以及实现
    的头像 发表于 07-11 16:30 1466次阅读

    PyTorch如何实现多层全连接神经网络

    在PyTorch中实现多层全连接神经网络(也称为密集连接神经网络或DNN)是一个相对直接的过程,涉及定义网络结构、初始化参数、前向传播、损失计算和反向传播等步骤。
    的头像 发表于 07-11 16:07 932次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 659次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 453次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 571次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 949次阅读

    bp神经网络和反向传播神经网络区别在哪

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小
    的头像 发表于 07-04 09:51 355次阅读

    bp神经网络算法的基本流程包括哪些

    初始化网络参数 在BP神经网络算法中,首先需要初始化网络的参数,包括权重和偏置。权重是连接神经
    的头像 发表于 07-04 09:47 420次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小
    的头像 发表于 07-03 11:00 560次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 848次阅读

    bp神经网络模型拓扑结构包括哪些

    神经网络的第一层,用于接收外部输入信号。输入层的神经元数量取决于问题的特征维度。每个输入信号通过一个权重与输入层的神经元相连,权重的初始值通常随机
    的头像 发表于 07-03 09:57 373次阅读

    卷积神经网络计算过程和步骤

    。 卷积层(Convolutional Layer) 卷积层是卷积神经网络的核心组成部分,它通过卷积操作提取输入数据的特征。卷积操作是一种数学运算,用于计算输入数据与卷积核(或滤波器)之间的局部相关性。卷积层的计算过程如下: 1.1 初始化卷积核 在卷积层中,卷积核是一个
    的头像 发表于 07-03 09:36 378次阅读

    卷积神经网络和bp神经网络的区别

    能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 2104次阅读

    神经网络前向传播和反向传播区别

    神经网络训练中的作用。 前向传播(Forward Propagation) 前向传播是神经网络中最基本的过程,它将输入数据通过网络层进行逐层计算,最终得到输出结果。前向传播的过程可以分为以下几个步骤: 1.1
    的头像 发表于 07-02 14:18 554次阅读