0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

麻省理工实现为“量子计算”生成高质量单光子

中科院长春光机所 来源:fqj 2019-05-21 16:37 次阅读

日前,麻省理工学院的研究人员设计出一种方法,能在室温下产生更多携带量子信息的单光子,这种设计为实用量子计算机的发展带来了希望。量子发射器产生的光子可以一次检测一个,量子计算机能利用这些光子的某些特性作为量子比特(“量子位”)来执行计算。


传统计算机处理和存储信息的比特是0或1,量子位元可以同时是0和1。这意味着量子计算机有可能解决经典计算机无法解决的问题。然而,关键的挑战是产生具有相同量子特性的单个光子——被称为“不可分辨”光子。为了改善这种难以分辨的特性,发射器将光通过一个光学腔汇聚起来,光子在这个光学腔中来回反射,这一过程有助于将光子的特性与腔匹配起来。
一般来说,光子在腔内停留的时间越长,它们就越匹配。但也有一个权衡,在大的空腔中,量子发射器自发地产生光子,导致只有一小部分光子停留在空腔中,使得这个过程效率低下。较小空腔可提取更多光子,但光子的质量较差,或者“可分辨”。
在2019年5月14日发表在《物理评论快报》上的一篇研究论文中,研究人员将一个洞分成两个,每个洞都有一个指定的任务。一个更小的腔处理光子的有效提取,而一个附着的大腔存储光子时间更长,以提高其不可分辨性。与单腔相比,研究人员耦合腔产生的光子具有95%左右的不可分辨性,相比之下,80%的不可分辨性,效率大约是单腔的三倍。
麻省理工学院电子研究实验室(RLE)的研究生,第一作者Hyeongrak“Chuck”Choi说:简而言之,两个总比一个好。

麻省理工学院设计的种新单光子发射器,它可以在室温下产生更多高质量的光子,这些光子可以用于实际的量子计算机、量子通信和其他量子设备。

在这个结构中,可以把两个腔体的作用分开:第一个腔体只收集光子,而第二个腔体则专注于单一通道中的不可分辨性。一个腔同时扮演两个角色不能同时满足两个指标,但是两个腔同时满足这两个指标。论文作者DirkEnglund,电子工程和计算机科学副教授,RLE研究员,量子光子实验室的负责人;;大连理工大学研究生朱迪;还有化学系的研究生YoseobYoon。新的量子发射器被称为“单光子发射器”,是由纯材料(如钻石、掺杂碳纳米管或量子点)的缺陷造成。

由这些“人造原子”产生的光被光子晶体中一个微小光学腔捕获——这是一种充当镜子的纳米结构。一些光子逃逸,但另一些则在空腔周围反弹,这迫使光子具有相同的量子特性——主要是各种频率特性。当它们被测量到匹配时,它们通过波导离开腔体。但单光子发射器也会经历大量的环境噪声,比如晶格振动或电荷波动,产生不同的波长或相位。不同性质的光子不能被“干涉”,这样它们的波就会重叠,产生干涉图样。这种干涉模式基本上是量子计算机用来观察和测量计算任务的。

光子不可分辨性是测量光子干涉能力的一种方法。因此,模拟它们在实际量子计算中的应用是一个有价值的度量标准。即使在光子干涉之前,由于无法分辨,也可以指定光子干涉的能力。如果我们知道这种能力,就能计算出如果他们把它用于量子技术,比如量子计算机、通信或中继器,会发生什么。在研究人员的系统中,一个小空腔附着在一个发射器上,这在研究中是钻石的一种光学缺陷,被称为“硅空位中心”:一个硅原子取代了钻石晶格中的两个碳原子。由缺陷产生的光被收集到第一个腔中,由于光聚焦结构,光子被提取的速率非常高。

然后纳米特性将光子导入第二个更大的腔。在那里,光子在一段时间内来回反弹。当它们达到高不可分辨性时,光子通过一个由连接腔和波导的孔洞形成部分反射镜排出。重要的是,这两种腔体都不需要像传统腔体那样满足严格的效率设计要求,也不需要像传统腔体那样难以区分。
传统腔体被称为“质量因子(Q-factor)”。q因子越高,光腔内的能量损失越小。但是具有高q因子的腔体在技术上具有挑战性。在这项研究中,耦合腔产生的光子质量比单腔系统都要高。即使它的Q因子大约是单腔系统质量的百分之一,它们也可以达到同样的不可分辨性,效率是单腔系统的三倍。
根据应用程序的不同,可以对空腔进行调优,以优化效率和不可辨别的特性,并考虑Q因子上的任何约束。这一点很重要,因为目前在室温下运行的排放物在质量和性能上可能存在很大差异。接下来,研究人员正在测试多腔的极限理论。再多一个腔仍然可以有效地处理初始提取,但随后将与多个腔相连接,使不同大小的光子达到某种最佳的不可分辨性。
但是很有可能会有一个限制,对于两个腔,只有一个连接,所以它是有效的。但如果有多个腔,多个连接可能会使其效率低下,研究人员现在正在研究用于量子计算空腔的基本极限。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子计算
    +关注

    关注

    4

    文章

    1093

    浏览量

    34941
  • 单光子
    +关注

    关注

    0

    文章

    19

    浏览量

    8085

原文标题:麻省理工实现为“量子计算”生成高质量单光子

文章出处:【微信号:cas-ciomp,微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    麻省理工学院对光子集成的量子发射器的光谱特性研究

    有待解决,因此世界各地的研究者都在积极研究。例如,集成用于通信、计算、信息处理和量子增强传感的量子测量协议需要有源光子
    的头像 发表于 11-08 06:25 153次阅读
    <b class='flag-5'>麻省理工</b>学院对<b class='flag-5'>光子</b>集成的<b class='flag-5'>量子</b>发射器的光谱特性研究

    麻省理工学院推出新型机器人训练模型

    近日,据TechCrunch报道,麻省理工学院的研究团队展示了一种创新的机器人训练模型,该模型突破了传统模仿学习方法的局限,不再依赖标准数据集,而是借鉴了大型语言模型(LLM)如GPT-4等所使用的大规模信息处理方式,为机器人学习新技能开辟了全新的道路。
    的头像 发表于 11-04 14:56 486次阅读

    【《计算》阅读体验】量子计算

    经典计算机的能力。 量子计算的重要性在于三点。首先,量子计算对强丘奇-图灵论题提出了明确挑战。强丘奇-图灵论题断言,任何可物理
    发表于 07-13 22:15

    TVP5146M2高质量芯片数字视频解码器数据表

    电子发烧友网站提供《TVP5146M2高质量芯片数字视频解码器数据表.pdf》资料免费下载
    发表于 07-09 11:35 0次下载
    TVP5146M2<b class='flag-5'>高质量</b><b class='flag-5'>单</b>芯片数字视频解码器数据表

    TVP5147高质量芯片数字视频解码器数据表

    电子发烧友网站提供《TVP5147高质量芯片数字视频解码器数据表.pdf》资料免费下载
    发表于 07-09 11:34 0次下载
    TVP5147<b class='flag-5'>高质量</b>、<b class='flag-5'>单</b>芯片数字视频解码器数据表

    TVP5147M1高质量芯片数字视频解码器数据表

    电子发烧友网站提供《TVP5147M1高质量芯片数字视频解码器数据表.pdf》资料免费下载
    发表于 07-09 11:25 1次下载
    TVP5147M1<b class='flag-5'>高质量</b>、<b class='flag-5'>单</b>芯片数字视频解码器数据表

    TVP5146高质量芯片数字视频解码器数据表

    电子发烧友网站提供《TVP5146高质量芯片数字视频解码器数据表.pdf》资料免费下载
    发表于 07-04 10:00 0次下载
    TVP5146<b class='flag-5'>高质量</b>、<b class='flag-5'>单</b>芯片数字视频解码器数据表

    麻省理工科技评论》洞察与思特沃克发布最新报告

    人工智能,导致大量商业价值被忽视的问题。 这份报告主题为"以战略目标为导向,实现数据现代化",由《麻省理工科技评论》洞察与思特沃克(Thoughtworks)联合制作,参考了对全球350名资深数据和技术领导者的调研,以及对埃克森美孚、英国皇家财产局、
    的头像 发表于 05-29 17:31 316次阅读

    麻省理工与Adobe新技术DMD提升图像生成速度

    2023年3月27日,据传,新型文生图算法虽然使得图像生成无比逼真,但奈何运行速度较慢。近期,美国麻省理工学院联合Adobe推出新型DMD方法,仅略微牺牲图像质量就大幅度提高图像生成
    的头像 发表于 03-27 14:17 512次阅读

    北斗芯片产业的高质量发展之路

    高质量发展是全面建设社会主义现代化国家的首要任务”,二十大报告中对高质量发展有着明确的论断和要求。在2023年的全国两会中还指出,加快实现高水平科技自立自强,是推动高质量发展的必由之
    的头像 发表于 03-15 14:03 382次阅读
    北斗芯片产业的<b class='flag-5'>高质量</b>发展之路

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    逻辑门,但是它们可以操作叠加态和纠缠态。 量子计算机的计算能力主要来自于量子比特的叠加特性,通过操纵量子比特的叠加态,
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    的不足 作者着重讲解了目前离商用落地最近的量子计算机---量子退火计算机,此类计算机在组合最优化问题上,能高效地提供较
    发表于 03-06 23:17

    稳中创新•产业升级•高质量发展 | 联诚发高质量发展工作推进会议召开

    推动企业高质量发展。联诚发创始人兼总裁龙平芳、董秘毛强军等公司领导、员工代表出席了本次大会。 会上,董秘毛强军首先提到,在当今竞争激烈的市场环境中,公司的高质量发展是企业追求的最终目标。为了实现这一目标,各板块和各岗
    的头像 发表于 02-22 11:33 468次阅读
    稳中创新•产业升级•<b class='flag-5'>高质量</b>发展 | 联诚发<b class='flag-5'>高质量</b>发展工作推进会议召开

    麻省理工学院开发出新的RFID标签防篡改技术

    虽然RFID标签广泛应用于各种场景,但安全性一直是其难以回避的问题。不法分子可以轻松复制或剥离这些电子标签,将赝品伪装成正品,欺骗消费者和认证系统。然而,麻省理工的新发明为这一问题提供了有效
    的头像 发表于 02-22 11:30 615次阅读
    <b class='flag-5'>麻省理工</b>学院开发出新的RFID标签防篡改技术

    什么是光电量子计算芯片?

    量子态来实现计算和通信。 光电量子计算芯片是目前量子计算
    的头像 发表于 01-09 14:42 918次阅读