0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Facebook全新开源深度学习框架Pythia,即插即用快速构建AI模型

DPVg_AI_era 来源:lq 2019-05-25 09:45 次阅读

Facebook的人工智能研究部门近期推出Pythia,一个模块化的即插即用框架。目标是使数据科学家能够快速构建、复制和基准人工智能模型,将VQA v2.0数据集模型的性能从65.67%提高到70.22%,已在Github上开源。

Facebook最近在开发者社区抛出了一系列工具。继一月份image processing library Spectrum、去年底的自然语言处理建模框架PyText和11月的人工智能增强学习平台Horizon的开源后,Facebook的人工智能研究部门又推出了Pythia,一个模块化的即插即用框架。

Pythia的目标是使数据科学家能够快速构建、复制和基准人工智能模型,已在Github上开源。

而Pythia(中文一般译作皮媞亚)这个名字的来历也很有意思。古希腊神话中,Pythia是阿波罗神的女祭司,服务于帕纳塞斯山上的德尔斐(Delphi)神庙,以传达阿波罗神的神谕而闻名,被认为能预知未来。

即插即用Pythia:让数据科学家快速构建、复制和基准AI模型

Pythia是什么?

Pythia是一个深度学习框架,支持视觉和语言领域的多任务处理。基于PyTorch 框架,模块化即插即用的设计使研究人员能够快速构建、复制和基准化人工智能模型。

Pythia是为视觉和语言任务而设计的,例如回答与视觉数据相关的问题和自动生成图像注释。

Pythia能做什么?

Pythia加入了最近的人工智能竞赛(2018年VQA挑战赛和2018年Vizwiz挑战赛)中获奖作品的元素。功能包括用参考实现(reference implementations)来显示以前最先进的模型如何实现相关的基准结果,并快速衡量新模型的性能。

除了多任务处理之外,Pythia还支持分布式培训和各种数据集,以及自定义损失、度量、调度(scheduling)和优化器。

Pythia的特性

Model Zoo:艺术级的视觉和语言模型的参考实现,包括LoRRA(VQA和TextVQA上的SoTA)、Pythia模型(VQA 2018 挑战赛获胜者)和Ban。

多任务处理:支持多任务处理,允许对多个数据集进行训练。

数据集:包括对各种内置数据集的支持,包括VQA, VizWiz, TextVQA and和VisualDialog。

模块:为视觉和语言领域中的许多常用层提供实现

分布式:支持基于数据并行和分布式数据并行的分布式训练。

Unopinionated:关于基于它的数据集和模型实现是Unopinionated。

定制:定制损失、度量、调度、优化器、Tensorboard;适合用户所有的定制需求。

用户可以使用Pythia为自己下一个视觉和语言多模式研究项目进行引导。Pythia还可以作为围绕视觉和语言数据集的挑战的起始代码库(参见TextVQA挑战赛和VQA挑战赛)。

Pythia最厉害的地方是什么?

Pythia简化了进入视觉和语言发展子领域的过程,使研究人员能够专注于更快的原型制作和实验。Facebook的目标是通过增加这些模型和结果的再现性来加速进展。这将使社区更容易建立成功系统的基础和基准。

开发者还希望通过Pythia消除障碍,能够使研究人员更快地为人们和智能机器开发新的交流方式。这项工作还应该帮助研究人员开发自适应人工智能,将多种理解合成一种更基于上下文的多模式理解。除了这个开源版本,Facebook计划继续添加工具、任务、数据集和引用模型。

在上面提到的VQA 2018比赛中,Pythia v0.1出发点是自下而上、自上而下模型的模块化重新实现,最终力压群雄而胜出。

Pythia v0.1证明,通过对模型体系结构和学习速率计划进行细微但重要的更改、微调图像功能和添加数据扩充,可以显著提高VQA v2.0数据集自上而下模型的性能,从65.67%提高到70.22%。

此外,通过使用不同特征和不同数据集训练的不同模型集合,Pythia v0.1能够显著提高1.31%的“标准”集合方式(即具有不同随机种子的相同模型)。总的来说,Pythia v0.1在VQA v2.0数据集的测试标准分割上达到了72.27%。

术语和概念

Pythia经过精心设计,从一开始就是一个多任务框架。这意味着使用Pythia,可以一起训练多个任务和数据集。

但是,Pythia在其模块中抽象了许多概念,在Pythia之上进行开发,有必要理解Pythia代码库中使用的概念和术语。一旦开发人员理解了这些简单的概念,就很容易在Pythia之上进行开发。其中主要概念和术语如下:

任务和数据集

在Pythia中,数据集被划分为一组任务。因此,任务对应属于它的数据集的集合。例如,VQA 2.0,VizWiz和TextVQA都属于VQA任务。 已为每个任务和数据集分配了一个唯一key,用于在命令行参数中引用。

下表显示了任务及其数据集:

下表显示了上表的反转,数据集及其任务和key:

模型

已经包括了最先进模型的参考实施,作为研究论文复制和新研究起点的基础。Pythia曾被用于以下论文:

走向可以阅读的VQA模型(LoRRA模型)

VQA 2018挑战赛冠军

VizWiz 2018挑战赛冠军

与任务和数据集类似,每个模型都使用唯一key进行注册,以便在配置和命令行参数中轻松引用。下表显示了可以运行的每个模型的关键名称和数据集。

注册表

受到Redux全球商店的启发,Pythia生态系统所需的有用信息已在注册表中注册。可以将注册表视为框架的多个部分所需的信息的通用存储,并在需要该信息的任何地方起作用信息源。

注册表还基于如上所述的唯一密钥来注册模型、任务、数据集等。 注册表的函数可以用作需要注册的类的装饰器(例如模型等)

导入注册表对象导入:

from pythia.common.registry import registry

配置

根据研究需要,Pythia中的大多数参数/设置都是可配置的。 Pythia特定的默认值(training_parameters)存在于:

pythia/common/defaults/configs/base.yml

其中详细的注释描述了每个参数的用法。为了便于使用和模块化,每个数据集的配置分别保存在:

pythia/common/defaults/configs/tasks/[task]/[dataset].yml

可以从Tasks中的表中获取数据集的[task]值和数据集部分。模型配置也是分开的,并且是用户在创建自己的模型时需要定义的部分。

由于每个数据集的单独配置,这个概念可以扩展到执行多任务并在此包含多个数据集配置。

处理器

处理器的主要目的是使数据处理流程尽可能与不同数据集相似,并允许代码重用。

处理器接受带有与所需数据相对应key的字典,并返回带有处理数据的字典。这有助于通过修复所需的签名来使处理器独立于逻辑的其余部分。

处理器用于所有数据集以切换数据处理需求。在处理器文档中了解有关处理器的更多信息。

SampleList

SampleList受到了maskrcnn-benchmark中BBoxList的启发,但更为通用。与Pythia集成的所有数据集都需要返回一个Sample,该Sample将被整理到SampleList中。

现在,SampleList带有许多方便的功能,可以轻松地批量处理和访问事物。对于例如样本是带有一些key的字典。在SampleList中,这些key的值将根据它是张量还是列表而被巧妙地分组,并分配回该字典。

因此,终端用户可以很好地将这些key组合在一起,并可以在他们的模型中使用它们。与Pythia集成的模型接收SampleList作为参数,这再次使trainer对模型和数据集不再有任何影响。在其文档中了解有关Sample和SampleList的更多信息。

预训练模型

在Pythia中使用预训练模型进行推理很容易。从下表中选取一个预训练模型,并按照步骤进行推理或生成预测让EvalAI评估。(注意,这部分内容需要先安装教程中介绍的数据,教程链接在文末)

现在,假设你到预培训模型model是link(从table中选择>右键单击>复制链接地址),相应的配置应该位于configs/[task]/[dataset]/[model].yml。例如,vqa2 train_and_val的配置文件应该是configs/vqa/vqa2/pythia_train_and_val.yml。现在要运行EvalAI的推断,请运行以下命令:

如果要在val上进行培训或评估,请相应地将run_type改为train或val。你还可以使用多个运行类型,例如进行训练、对val进行推断、还可以将--run_type设置为train+val+inference进行推断。

如果删除--evalai_inference论证,Pythia 将执行推断并直接在数据集上提供结果。请注意,对于测试集,这是不能用的,因为我们没有它们的答案/目标。因此,这对于在本地执行 val集的推理很有用。

如果删除--evalai_inference论证,Pythia 将执行推断并直接在数据集上提供结果。请注意,对于测试集,这是不能用的,因为我们没有它们的答案/目标。因此,这对于在本地执行 val集的推理很有用。

下表显示了各种预培训模型的评估指标:

Demo演示

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Facebook
    +关注

    关注

    3

    文章

    1429

    浏览量

    54807
  • 深度学习
    +关注

    关注

    73

    文章

    5507

    浏览量

    121266
  • pytorch
    +关注

    关注

    2

    文章

    808

    浏览量

    13249

原文标题:Facebook全新开源深度学习框架Pythia,即插即用快速构建AI模型

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    开源AI模型库是干嘛的

    开源AI模型库是指那些公开源代码、允许自由访问和使用的AI模型集合。这些
    的头像 发表于 12-14 10:33 201次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习
    的头像 发表于 10-25 09:22 256次阅读

    AI模型深度学习的关系

    AI模型深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度
    的头像 发表于 10-23 15:25 904次阅读

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 631次阅读

    Meta发布全新开源模型Llama 3.1

    科技巨头Meta近期震撼发布了其最新的开源人工智能(AI模型——Llama 3.1,这一举措标志着Meta在AI领域的又一重大突破。Meta创始人马克·扎克伯格亲自站台,盛赞Llam
    的头像 发表于 07-24 18:25 1459次阅读

    ai模型ai框架的关系是什么

    AI模型AI框架是人工智能领域中两个重要的概念,它们之间的关系密切且复杂。 AI模型的定义
    的头像 发表于 07-16 10:07 4w次阅读

    AI模型AI框架的关系

    在探讨AI模型AI框架的关系时,我们首先需要明确两者的基本概念及其在人工智能领域中的角色。AI模型
    的头像 发表于 07-15 11:42 1126次阅读

    pytorch中有神经网络模型

    处理、语音识别等领域取得了显著的成果。PyTorch是一个开源深度学习框架,由FacebookAI
    的头像 发表于 07-11 09:59 723次阅读

    PyTorch神经网络模型构建过程

    PyTorch,作为一个广泛使用的开源深度学习库,提供了丰富的工具和模块,帮助开发者构建、训练和部署神经网络模型。在神经网络
    的头像 发表于 07-10 14:57 522次阅读

    keras模型转tensorflow session

    和训练深度学习模型。Keras是基于TensorFlow、Theano或CNTK等底层计算框架构建的。TensorFlow是一个开源的机器
    的头像 发表于 07-05 09:36 559次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能性的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型学习的基石,更是
    的头像 发表于 07-04 11:49 1463次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型
    的头像 发表于 07-02 14:04 987次阅读

    深度学习模型训练过程详解

    详细介绍深度学习模型训练的全过程,包括数据预处理、模型构建、损失函数定义、优化算法选择、训练过程以及模型
    的头像 发表于 07-01 16:13 1332次阅读

    智谱AI发布全新多模态开源模型GLM-4-9B

    近日,智谱AI在人工智能领域取得重大突破,成功推出全新开源模型GLM-4-9B。这款模型以其卓越的多模态能力,再次刷新了业界对于大型语言模型
    的头像 发表于 06-07 09:17 772次阅读

    谷歌模型框架是什么软件?谷歌模型框架怎么用?

    谷歌模型框架通常指的是谷歌开发的用于机器学习和人工智能的软件框架,其中最著名的是TensorFlow。TensorFlow是一个开源的机器
    的头像 发表于 03-01 16:25 902次阅读