0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能 | 机器学习算法预测多肽自组装,利用AI设计新型生物材料

电子工程师 来源:YXQ 2019-05-27 17:34 次阅读

人工智能已经广泛应用于人脸识别、自动驾驶、金融等领域。在生物医学方面应用主要集中于医学诊断的图像识别,而将人工智能应用于指导生物医学材料的设计尚无相关研究和报导。2019 年 5 月 21 日,《美国国家科学院院刊》(PNAS)发表了华人科学家、瑞典卡罗琳斯卡医学院助理教授李林鲜团队的一项最新成果,首次实现了将人工智能技术应用于生物材料的设计中。

本项研究的文章通讯作者李林鲜教授在接受 DeepTech 采访时表示,“传统水凝胶的设计方法有限,效率低下,合成难度大,耗时长。大多数报导均基于原有的已知结构的基础上进行修饰,结构差异性小,进而导致其力学性能可调控范围窄。利用机器学习的方法,可以很好地预测和指导具有不同机械性能的结构多样的水凝胶的设计。”

在这项研究中,研究人员利用组合化学技术快速创建了超过两千种结构差异的水凝胶文库,通过计算这些化合物的上千种拓扑和物理化学特征参数,实现了利用机器学习预测水凝胶的形成。研究人员实现了将凝胶的物理化学结构特征与其自组装行为联系起来,加速了用于生物医学用途的新型自组装水凝胶结构的设计。多肽自组装水凝胶

多肽是氨基酸以肽键连接在一起而形成的化合物,而多肽分子又可以利用氢键、疏水性作用、 π-π 堆积作用等非共价键力,自组装形成形态与结构特异的多肽分子聚集体。由于多肽分子良好的生物相容性和可调控的降解性,自组装多肽在组织工程、药物缓释等方面表现出巨大的应用潜力。 1993 年,麻省理工学院教授张曙光等发现一种可自组装的离子互补型多肽,并用这种多肽合成了水凝胶膜,开启了分子自组装技术新领域。凝胶是指由化合物与溶剂组成的呈现三维网络立体结构的体系,水凝胶是其中最常见也是最为重要的一种。绝大多数生物体内存在的天然凝胶以及许多合成高分子凝胶均属于水凝胶。

水凝胶通常是通过天然的高分子聚合物或者合成的聚合物分子制备,另外是使用合成的小分子化合物,通过超分子自组装作用制备水凝胶。在合成的小分子凝胶中,基于多肽分子的水凝胶由于其固有的生物相容性和生物降解性显得尤为重要。近年来,多肽水凝胶在药物释放、伤口愈合、细胞培养等领域已经显示了巨大的应用前景。自组装多肽水凝胶不仅能够构建三维多孔纳米支架,模仿天然细胞外基质结构,为细胞生长提供支持,而且自组装多肽水凝胶本身由氨基酸序列组成,在此基础上引入特定序列使其具备更多的特异性质和功能,以满足更广泛的需求。水凝胶的研究引起了科研人员广泛的兴趣,然而研究人员发现水凝胶的设计并没有规律可循。在已知的多肽水凝胶中,分子结构具有多样性,先前的设计规则很少,大多数是通过偶然发现或者对已知凝胶结构的修饰上。因此极大限制了目前水凝胶领域的研究进度。文章第一作者李飞博士在采访时表示,“基于多肽的水凝胶设计策略具有重要意义,我们的目的是揭示分子结构和水凝胶行为之间的关系,这可以帮助我们预测和设计具有新化学结构的多肽水凝胶。”机器学习指导水凝胶的设计

在这项最新的研究中,研究人员一直在思考,如何才能找到一种合理的方法设计不同性能的水凝胶?最终,人工智能与机器学习的出现及应用,给了研究人员一个很好的机会。深度学习或机器学习已成功应用于具有准确预测的医学应用,例如病理图像的诊断。然而,关于它们在有机材料设计中的应用仅有少数报道,并且预测精度低于 50% 。在能源领域报道了大多数使用机器学习进行材料设计的工作,但关于它们用于生物材料设计的报告非常有限。研究人员表示,他们的工作是第一次通过组合化学和机器学习来预测水凝胶的自组装行为。通过机器学习,研究人员可以详细研究所有设计化合物的结构信息和凝胶性质之间的关联性,从而预测和指导水凝胶的设计与合成。

水凝胶示意图具体而言,研究人员通过组合化学技术快速构建了一个可能形成凝胶的化合物库,该化合物库中包含了 2304 个化合物。通过对化合物库中的每个化合物用计算模拟软件进行分析,研究人员得到包括 2D 和 3D 结构信息在内的 3109 个物理化学参数,例如亲疏水、芳香性质等。整合 2304 个化合物的所有参数,研究人员得到了 7163136 个数据点,并进一步通过学习这些数据点与是否成凝胶的性质,以及计算之间的相互关系,最终来预测未知水凝胶的形成,并指导设计。重要的是,研究人员还证明了所设计的水凝胶支持培养中的细胞增殖,表明水凝胶的生物相容性。李林鲜同时表示,接下来研究团队还会继续开展通过人工智能做新材料的设计和药物设计。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    29665

    浏览量

    268004
  • 机器学习
    +关注

    关注

    66

    文章

    8340

    浏览量

    132281

原文标题:机器学习算法预测多肽自组装,用人工智能设计新型生物材料

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让
    发表于 10-24 17:22 2401次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用智能化管理。 其次,第6章通过多个案例展示了
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠问题,将
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    材料基因组工程的推动下,人工智能如何与材料科学结合,加快传统材料新型材料的开发过程。 第4章介绍了人工
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    人工智能机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度
    的头像 发表于 07-03 18:22 984次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习
    的头像 发表于 04-04 08:41 222次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    *附件:初学者完整学习流程实现手写数字识别案例.pdf 人工智能 语音对话机器人案例 26分03秒 https://t.elecfans.com/v/27185.html *附件:语音对话
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    深度学习人工智能中的 8 种常见应用

    深度学习简介深度学习人工智能AI)的一个分支,它教神经网络学习和推理。近年来,它解决复杂问题并在各个领域提供尖端性能的能力引起了极大的兴
    的头像 发表于 12-01 08:27 3181次阅读
    深度<b class='flag-5'>学习</b>在<b class='flag-5'>人工智能</b>中的 8 种常见应用