卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
FPGA
+关注
关注
1630文章
21766浏览量
604598 -
神经网络
+关注
关注
42文章
4776浏览量
100937
发布评论请先 登录
相关推荐
【PYNQ-Z2申请】基于PYNQ的卷积神经网络加速
,得到训练参数2、利用开发板arm与FPGA联合的特性,在arm端实现图像预处理已经卷积核神经网络的池化、激活函数和全连接,在FPGA端
发表于 12-19 11:37
什么是深度学习?使用FPGA进行深度学习的好处?
的记录精度超过了人类。这些是通过卷积神经网络 (CNN) 和递归神经网络 (RNN) 实现的,它们是在结构上进一步设计普通神经
发表于 02-17 16:56
基于FPGA的深度卷积神经网络服务优化和编译测试
,自然语言处理,推荐算法,图像识别等广泛的应用领域。 FPGA云服务器提供了基于FPGA的深度卷积神经网络加速服务,单卡提供约
发表于 11-15 16:56
•860次阅读
深度学习中的卷积神经网络层级分解综述
随着深度学习的不断发展,卷积神经网络(CNN)在目标检测与图像分类中受到研究者的广泛关注。CNN从 Lenet5网络发展到深度残差
发表于 05-19 16:11
•5次下载
卷积神经网络和深度神经网络的优缺点 卷积神经网络和深度神经网络的区别
深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预测和分类。
发表于 08-21 17:07
•4194次阅读
卷积神经网络的原理与实现
1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经
卷积神经网络可以通过输出反推到输入吗
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。CNN通过
卷积神经网络的实现原理
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经
卷积神经网络实现示例
卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,主要用于处理具有网格结构的数据,如图像。CNN通过
评论