0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习和普通机器学习的区别

电子工程师 来源:工程师曾玲 2019-06-08 14:44 次阅读

文章标题是个很有趣的问题,深度学习作为机器学习的子集,它和普通机器学习之间到底有什么区别呢?作者使用了一种很普通的方式来回答这个问题。

本质上,深度学习提供了一套技术和算法,这些技术和算法可以帮助我们对深层神经网络结构进行参数化——人工神经网络中有很多隐含层数和参数。深度学习背后的一个关键思想是从给定的数据集中提取高层次的特征。因此,深度学习的目标是克服单调乏味的特征工程任务的挑战,并帮助将传统的神经网络进行参数化。

现在,为了引入深度学习,让我们来看看一个更具体的例子,这个例子涉及多层感知器(MLP)。

在MLP中,“感知器”这个词可能有点让人困惑,因为我们并不想只在我们的网络中使用线性神经元。利用MLP,我们可以学习复杂的函数来解决非线性问题。因此,我们的网络通常由连接输入和输出层的一个或多个“隐藏”层组成。这些隐藏的层通常有某种S型的激活函数(logs-s形或双曲正切等)。例如,在我们的网络中,一个逻辑回归单元,返回0-1范围内的连续值。

一个简单的MLP看起来就像这样:

深度学习和普通机器学习的区别

其中y是最终的类标签,我们返回的是基于输入x的预测,“a”是我们激活的神经元,而“w”是权重系数。现在,如果我们向这个MLP添加多个隐藏层,我们也会把网络称为“深度”。这种“深度”网络的问题在于,为这个网络学习“好”的权重变得越来越难。当我们开始训练我们的网络时,我们通常会将随机值赋值为初始权重,这与我们想要找到的“最优”解决方案很不一样。在训练过程中,我们使用流行的反向传播算法(将其视为反向模式自动微分)来传播从右到左的“错误”,并计算每一个权重的偏导数,从而向成本(或“错误”)梯度的相反方向迈进。现在,深度神经网络的问题是所谓的“消失梯度”——我们添加的层越多,就越难“更新”我们的权重,因为信号变得越来越弱。由于我们的网络的权重在开始时可能非常糟糕(随机初始化),因此几乎不可能用反向传播来参数化一个具有“深度”的神经网络。

这就是深度学习发挥作用的地方。粗略地说,我们可以把深度学习看作是一种“聪明”的技巧或算法,可以帮助我们训练这种“深度”神经网络结构。有许多不同的神经网络结构,但是为了继续以MLP为例,让我来介绍卷积神经网络(CNN)的概念。我们可以把它看作是我们的MLP的“附加组件”,它可以帮助我们检测到我们的MLP“好”的输入。

在一般机器学习的应用中,通常有一个重点放在特征工程部分;算法学习的模型只能是和输入数据一样好。当然,我们的数据集必须要有足够多的、具有辨别能力的信息,然而,当信息被淹没在无意义的特征中,机器学习算法的性能就会受到严重影响。深度学习的目的是从杂乱的数据中自动学习;这是一种算法,它为我们提供了具有意义的深层神经网络结构,使其能够更有效地学习。我们可以把深度学习看作是自动学习“特征工程”的算法,或者我们也可以简单地称它们为“特征探测器”,它可以帮助我们克服一系列挑战,并促进神经网络的学习。

让我们在图像分类的背景下考虑一个卷积神经网络。在这里,我们使用所谓的“接收域”(将它们想象成“窗口”),它们会经过我们的图像。然后,我们将这些“接受域”(例如5x5像素的大小)和下一层的1个单元连接起来,这就是所谓的“特征图”。在这个映射之后,我们构建了一个所谓的卷积层。注意,我们的特征检测器基本上是相互复制的——它们共享相同的权重。它的想法是,如果一个特征检测器在图像的某个部分很有用,它很可能在其他地方也有用,与此同时,它还允许用不同的方式表示图像的各个部分。

深度学习和普通机器学习的区别

接下来,我们有一个“池”层,在这个层中,我们将我们的特征映射中的相邻特征减少为单个单元(例如,通过获取最大特征,或者对其进行平均化)。我们在很多测试中都这样做,最终得出了我们的图像的几乎不不变的表示形式(确切的说法是“等变量”)。这是非常强大的,因为无论它们位于什么位置,我们都可以在图像中检测到对象。

深度学习和普通机器学习的区别

本质上,CNN这个附加组件在我们的MLP中充当了特征提取器或过滤器。通过卷积层,我们可以从图像中提取有用的特征,通过池层,我们可以使这些特征在缩放和转换方面有一定的不同。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8422

    浏览量

    132739
  • 深度学习
    +关注

    关注

    73

    文章

    5504

    浏览量

    121243
收藏 人收藏

    评论

    相关推荐

    机器学习深度学习区别在哪?看完就知道了

    如果你经常想让自己弄清楚机器学习深度学习区别,阅读该文章,我将用通俗易懂的语言为你介绍他们之间的差别。
    的头像 发表于 11-09 07:19 2.4w次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>在哪?看完就知道了

    一文详解机器学习深度学习区别

    深度学习这几年特别火,就像5年前的大数据一样,不过深度学习其主要还是属于机器学习的范畴领域内,所
    发表于 09-06 12:48 2507次阅读
    一文详解<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>

    如何区分深度学习机器学习

    深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度
    发表于 10-27 16:50 1961次阅读
    如何区分<b class='flag-5'>深度</b><b class='flag-5'>学习</b>与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>

    一文读懂深度学习机器学习的差异

    机器学习深度学习变得越来越火。突然之间,不管是了解的还是不了解的,所有人都在谈论机器学习
    发表于 11-16 01:38 3086次阅读
    一文读懂<b class='flag-5'>深度</b><b class='flag-5'>学习</b>与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的差异

    5分钟内看懂机器学习深度学习区别

    由 mengqiqi 于 星期四, 2018-09-13 09:34 发表 在本文中,我们将研究深度学习机器学习之间的差异。我们将逐一了解它们,然后讨论他们在各个方面的不同之处。除了
    发表于 09-13 17:19 560次阅读

    深度学习机器学习的六个本质区别你知道几个?

    深度学习机器学习已经变得无处不在,那它们之间到底有什么区别呢?本文我们为大家总结了深度
    的头像 发表于 11-30 11:17 1.5w次阅读

    深度学习机器学习区别是什么

    随着人工智能浪潮席卷现代社会,不少人对于机器学习深度学习、计算机视觉、自然语言处理等名词已经耳熟能详。可以预见的是,在未来的几年里,无论是在业界还是学界,拥有
    的头像 发表于 02-02 10:56 1.1w次阅读

    从五个方面详谈机器学习深度学习区别

    继系列上一篇 所以,机器学习深度学习区别是什么?浅谈后,今天继续深入探讨两者的更多区别
    的头像 发表于 03-01 15:44 1.6w次阅读

    机器学习深度学习的关键区别

    “人工智能”、“机器学习”和“深度学习”这三个词经常交替出现,但如果你正在考虑从事人工智能的职业,了解它们之间的区别是很重要的。
    发表于 03-02 16:57 1726次阅读

    机器学习深度学习有什么区别

    深度学习算法现在是图像处理软件库的组成部分。在他们的帮助下,可以学习和训练复杂的功能;但他们的应用也不是万能的。 “机器学习”和“
    的头像 发表于 03-12 16:11 8210次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>有什么<b class='flag-5'>区别</b>?

    人工智能与机器学习深度学习区别

    人工智能包含了机器学习深度学习。你可以在图中看到,机器学习是人工智能的子集,
    的头像 发表于 03-29 11:04 1505次阅读
    人工智能与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>、<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>

    AI、机器学习深度学习区别及应用

    深度学习和神经网络的区别在于隐藏层的深度。一般来说,神经网络的隐藏层要比实现深度学习的系统浅得多
    发表于 07-28 10:44 568次阅读
    AI、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>及应用

    机器学习深度学习区别

    机器学习深度学习区别 随着人工智能技术的不断发展,机器
    的头像 发表于 08-17 16:11 4253次阅读

    深度学习机器学习的定义和优缺点 深度学习机器学习区别

      深度学习机器学习机器学习领域中两个重要的概念,都是人工智能领域非常热门的技术。两者的关系
    发表于 08-21 18:27 4704次阅读

    机器学习深度学习区别

      机器学习深度学习是当今最流行的人工智能(AI)技术之一。这两种技术都有助于在不需要人类干预的情况下让计算机自主学习和改进预测模型。本文
    发表于 08-28 17:31 1551次阅读