0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何利用深度学习技术处理图像水印

WpOh_rgznai100 来源:fqj 2019-06-07 11:32 次阅读

水印作为一种保护版权的有效方式被广泛地应用于海量的互联网图像,针对水印的各种处理显得越来越重要,比如水印的检测和水印的去除与反去除。在这里我们和大家分享一下业余期间在水印智能化处理上的一些实践和探索,希望可以帮助大家在更好地做到对他人图像版权保护的同时,也能更好地防止自己的图像被他人滥用。

我们大家在日常生活中如果下载和使用了带有水印的互联网图像,往往既不美观也可能会构成侵权。为了避免使用带有水印的图像带来的各种影响,最直接的做法就是将带有水印的图像找出来丢弃不用,此外还有一种不推荐的做法就是去掉图像上的水印后再使用。

接下来我们将会围绕上述两种大家常见的做法展开,首先介绍如何利用深度学习技术快速搭建一个水印检测器,实现水印的自动检测,同时我们还会进一步展示在水印检测的基础上如何利用深度学习技术设计一个水印去除器,自动将图像上的水印去除。

一个包罗万象的水印数据集

无论是搭建水印检测器或是水印去除器,都需要海量水印图像作为数据基础。然而现实中并没有直接可以使用的水印图像数据集。因此,我们的首要任务是构建一个水印图像数据集。首先我们要收集各式各样的水印,为了保证后续模型良好的泛化性能,水印的种类要尽可能的多,水印样式也要尽可能的丰富。

如何利用深度学习技术处理图像水印

我们一共收集了80种来自于公司、组织和个人的水印,包括了中文、英文和logo等不同样式。接下来就是制作带水印的图像,为了保证图像数据的一般性,我们将公开的PASCAL VOC 2012数据集的图像作为原始的无水印图像,然后利用图像处理工具将收集的80种水印以随机的大小、位置和透明度打在原始图像上,同时记录下水印的位置信息,从而得到第一个大规模的水印图像数据集。

水印数据集的80%被划分为训练集,剩余的20%被划分为测试集,为了适应现实场景中需要机器自动检测和去除从未见过的水印的需求,我们确保训练集中的水印不会出现在测试集中,这样可以很好地模拟现实生活中的使用场景。现在水印图像数据集已经准备就绪,接下来就是如何去搭建水印检测器和去除器。

能够一眼看穿各类水印的检测器

水印在图像中的视觉显著性很低,具有面积小,颜色浅,透明度高等特点,带水印图像与未带水印图像之间的差异往往很小,区分度较低。为了构建一个有效的水印检测器,我们将图像水印检测问题转化为一种特殊的单目标检测任务,即判断图像中是否有水印这一单目标存在。

当前基于深度学习的目标检测模型有很多,可以分为以Faster R-CNN为代表的两阶段目标检测算法和以YOLO和RetinaNet等为代表的单阶段目标检测算法。前者是先由算法生成一系列待检测目标的候选框,再通过卷积神经网络进行候选框的分类;后者则不用产生候选框,直接将目标边框定位的问题转化为回归问题处理。一般来说单阶段的算法在检测速度上会更快,但检测精度上会有所下降。我们在这里分别基于Faster R-CNN、YOLOv2和RetinaNet这三种目标检测算法来搭建水印检测器,从对比的结果来看,三种方法都展现了令人满意的检测效果,其中以RetinaNet最优。

如何利用深度学习技术处理图像水印

为了更加直观地展示我们搭建的基于RetinaNet的水印检测器的效果,我们将测试集上的水印检测结果可视化,蓝色的框是实际的水印区域,红色的框是检测器定位的水印区域,从可视化结果可以看出,对于未出现在训练集中的水印,我们的水印检测器依然可以一眼就看穿。有了这样一款水印检测器,我们就可以在海量图像中快速又准确地检测出带水印的图像。

往前走一步:从检测到去除

如果只是利用AI来自动检测水印,是不是总感觉少了点什么?接下来我们在水印检测的基础上往前再走一步,利用AI实现水印的自动去除。因为水印在图像上的面积较小,所以直接对整幅图像进行水印去除显得过于粗暴,也会严重拖慢去除速度。针对这种情况我们结合水印检测设计了更贴合实际操作的水印处理流程,我们先通过水印检测器检测出水印区域,然后对水印区域进行水印去除操作。

水印去除问题可以看作是一个从图像到图像的转换问题,即将带水印的图像转换为无水印的图像。这里我们使用全卷积网络来搭建水印去除器,实现这种图像到图像的转换。全卷积网络的输入是带水印的图像区域,经过多层卷积处理后输出无水印的图像区域,我们希望网络输出的无水印图像能够和原始的无水印图像尽可能的接近。

如何利用深度学习技术处理图像水印

为了尽可能提升网络输出无水印图像的质量,我们采用U-net结构替换了传统的编解码器结构,将输入信息添加到输出中,从而尽可能保留了图像的背景信息。同时我们采用感知损失(Perceptual Loss)和一范数损失(L1 Loss)相结合的方式替换传统的均方误差损失(MSE Loss),使输出的无水印图像在细节和纹理上能够更贴近原图。

我们将水印去除器在测试集上的一些去水印效果可视化,左列是输入的水印区域,右列是输出的无水印区域。从可视化的结果可以看出对未知水印的去除效果还是不错的。

写在最后

针对水印的各种处理一直是研究的热点,也吸引了越来越多的关注。本文介绍了如何通过当前流行的深度学习技术来搭建水印的检测器和去除器,实现对水印的智能处理。

在后续的文章中,我们会进一步介绍一种更强大的水印去除器,也会提出一些对水印反去除的思考。值得注意的是,版权保护是大家一直要坚持的事情,水印去除的研究目的更多是为了通过攻击水印来验证其是否有效,从而促进水印反去除能力的提升。保护版权,AI有责。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据集
    +关注

    关注

    4

    文章

    1205

    浏览量

    24635
  • 深度学习
    +关注

    关注

    73

    文章

    5490

    浏览量

    120951

原文标题:如何利用深度学习技术处理图像水印?

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    图像处理应用中深度学习的重要性分析

    作者:Martin Cassel,Silicon Software 工业应用中FPGA 上的神经元网络(CNN) 深度学习应用凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极
    的头像 发表于 12-13 11:24 6137次阅读

    图像水印

    本人学生。毕业设计是基于Labview 数字图像水印利用LabVIEW平台,在图像中嵌入二值水印图像
    发表于 05-19 14:34

    基于深度学习和3D图像处理的精密加工件外观缺陷检测系统

    检测,检测准确性和检测稳定性较差、容易误判。 基于深度学习和3D图像处理的精密加工件外观缺陷检测系统创新性结合深度
    发表于 03-08 13:59

    基于改进曲率尺度空间技术图像水印算法

    提出一种新的鲁棒性水印算法,利用改进的曲率尺度空间技术,提取图像的少量较顽强角点,用于重建受几何攻击的图像。选取2 个chirp 信号作为
    发表于 03-24 09:56 12次下载

    一种有效的数字图像水印算法

    随着因特网的发展,数字水印技术被广泛的应用于数字图像,音频,视频等多媒体产品的版权保护。该文提出了一种有效的数字水印算法。首先利用混沌映射将
    发表于 07-09 10:19 19次下载

    基于DWT域的自适应彩色图像水印算法

    近年来,彩色图像水印技术逐渐成为了研究的热点。本文提出了一种基于DWT 域的自适应彩色图像水印算法。该算法
    发表于 08-27 10:50 15次下载

    基于HVS和小波变换的彩色图像水印算法

    提出了一种将彩色水印图像嵌入到原始彩色图像中的数字水印算法。该算法对水印的加密采取了Arnold结合矩阵变换的方法,并
    发表于 07-06 15:58 16次下载

    深度学习图像超清化的应用

    深度学习的出现使得算法对图像的语义级操作成为可能。本文即是介绍深度学习技术
    发表于 09-30 11:15 1次下载
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在<b class='flag-5'>图像</b>超清化的应用

    基于Weber准则的图像脆弱盲水印技术研究

    提出了一种应用于医学图像认证的基于Weber准则的脆弱盲水印技术,基于Weber准则选择图像中的像素并插入脆弱水印。由于这种
    发表于 12-07 10:13 1次下载
    基于Weber准则的<b class='flag-5'>图像</b>脆弱盲<b class='flag-5'>水印</b><b class='flag-5'>技术</b>研究

    如何在图像处理中应用深度学习技术的详细资料概述

    深度学习应用凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极大关注,这势必将提升现有图像处理
    的头像 发表于 03-30 11:31 4420次阅读

    深度学习图像分割的方法和应用

    分析和分类以及机器人和自动驾驶车辆的图像处理等应用上。 许多计算机视觉任务需要对图像进行智能分割,以理解图像中的内容,并使每个部分的分析更加容易。今天的
    的头像 发表于 11-27 10:29 3126次阅读

    结合BEMD与Hilbert的重复嵌入图像水印算法

    )与 Hilbert曲线的重复嵌入图像水印算法。首先,利用 Arnold变换对水印图像进行置乱处理
    发表于 04-21 14:37 1次下载
    结合BEMD与Hilbert的重复嵌入<b class='flag-5'>图像</b><b class='flag-5'>水印</b>算法

    使用深度学习进行三维图像处理

    的 DICOM 或 NIfTI 图像进行分析。还可以在显微镜检查中使用三维图像处理技术,以检测和分析组织标本或跟踪神经元。  除医学成像以外,还可以使用三维
    的头像 发表于 11-05 17:43 3225次阅读

    深度学习中的图像分割

    深度学习可以学习视觉输入的模式,以预测组成图像的对象类。用于图像处理的主要
    的头像 发表于 05-05 11:35 1219次阅读

    OpenCV库在图像处理深度学习中的应用

    本文深入浅出地探讨了OpenCV库在图像处理深度学习中的应用。从基本概念和操作,到复杂的图像变换和深度
    的头像 发表于 08-18 11:33 843次阅读