近十年来,扫描探针、电子显微镜和光学显微镜的光谱成像方法发展迅速,导致了大型多维数据集的兴起。在许多情况下,将高光谱数据降维到较低维度的材料特征参数,要依赖功能拟合,虽然拟合函数的近似形式是已知的,但函数的参数却是需要人为确定的。然而,通过迭代方法实现噪声数据的功能拟合(如最小二乘梯度下降),常常会出现虚假结果。

来自美国橡树林国家实验室的Stephen Jesse领导的团队,提出了一种新的方法,可用来逆向解决问题,可从基于光谱成像数据的最小二乘拟合中提取物理模型参数,并能通过深度学习测定先验参数而增强提取能力。他们将这种方法应用于从压电响应力显微镜数据中提取简谐振子参数,并证明了通过结合使用深度神经网络和最小二乘拟合,可以探测比传统方法低一个数量级的信号响应,接近激发信号的热限制。作为模型系统,他们演示了从层状铁电化合物的带激发压电响应力显微镜成像中,提取阻尼简谐振子参数。这种使用深度神经网络的方法是通用的,并且在正向和反向情况下都显示出它们作为函数近似器的效用,且它们在嘈杂的环境中工作良好。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
原文标题:npj: 电镜中的垃圾变黄金—深度神经网络
文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。
相关推荐
BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
发表于 02-12 15:15
•239次阅读
随着人工智能技术的飞速发展,深度神经网络(Deep Neural Network, DNN)作为其核心算法之一,在图像识别、语音识别、自然语言处理等领域取得了显著成果。然而,传统的深度神经网络
发表于 07-24 10:42
•888次阅读
残差网络(Residual Network,通常简称为ResNet) 是深度神经网络的一种 ,其独特的结构设计在解决深层网络训练中的梯度消失和梯度爆炸问题上取得了显著的突破,并因此成为
发表于 07-11 18:13
•1268次阅读
深度神经网络(Deep Neural Networks, DNNs)作为机器学习领域中的一种重要技术,特别是在深度学习领域,已经取得了显著的成就。它们通过模拟人类大脑的处理方式,利用多层神经
发表于 07-10 18:23
•1372次阅读
RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
发表于 07-05 09:52
•728次阅读
深度神经网络(Deep Neural Networks, DNNs)作为机器学习的一种复杂形式,是广义人工神经网络(Artificial Neural Networks, ANNs)的重要分支。它们
发表于 07-04 16:08
•1904次阅读
循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
发表于 07-04 14:24
•1602次阅读
在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需
发表于 07-04 13:20
•1198次阅读
深度神经网络(Deep Neural Networks, DNNs)作为人工智能领域的重要技术之一,通过模拟人脑神经元之间的连接,实现了对复杂数据的自主学习和智能判断。其设计方法不仅涉及网络
发表于 07-04 13:13
•652次阅读
在深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两种极其重要
发表于 07-03 16:12
•4073次阅读
BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与
发表于 07-03 10:14
•1023次阅读
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络的基本概念、结构
发表于 07-03 09:15
•608次阅读
随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
发表于 07-02 18:19
•1111次阅读
化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
发表于 07-02 14:24
•5093次阅读
深度神经网络(Deep Neural Networks,DNNs)是一类具有多个隐藏层的神经网络,它们在许多领域取得了显著的成功,如计算机视觉、自然语言处理、语音识别等。以下是一些常见的深度
发表于 07-02 10:00
•1792次阅读
评论