0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

效率网络:比现有卷积网络小84倍,比GPipe快6.1倍

智能感知与物联网技术研究所 来源:YXQ 2019-06-04 11:40 次阅读

谷歌AI研究部门华人科学家再发论文《EfficientNet:重新思考CNN模型缩放》,模型缩放的传统做法是任意增加CNN的深度和宽度,或使用更大的输入图像分辨率进行训练,而使用EfficientNet使用一组固定额缩放系数统一缩放每个维度,超越了当先最先进图像识别网络的准确率,效率提高了10倍,而且更小。

目前提高CNN精度的方法,主要是通过任意增加CNN深度或宽度,或使用更大的输入图像分辨率进行训练和评估。

以固定的资源成本开发,然后按比例放大,以便在获得更多资源时实现更好的准确性。例如ResNet可以通过增加层数从ResNet-18扩展到ResNet-200。

再比如开源大规模神经网络模型高效训练库GPipe,通过将基线CNN扩展四倍来实现84.3% ImageNet top-1精度。

这种方法的优势在于确实可以提高精度,但劣势也很明显。这个时候往往需要进行繁琐的微调。一点点的摸黑去试、还经常的徒劳无功。这绝对不是一件能够让人身心愉快的事情,对于谷歌科学家们也一样。

这就是为什么,谷歌人工智能研究部门的科学家们正在研究一种新的“更结构化”的方式,来“扩展”卷积神经网络。他们给这个新的网络命名为:EfficientNet(效率网络)。

代码已开源,论文刚刚上线arXiv,并将在6月11日,作为poster亮相ICML 2019。

比现有卷积网络小84倍,比GPipe快6.1倍

为了理解扩展网络的效果,谷歌的科学家系统地研究了缩放模型不同维度的影响。模型缩放并确定仔细平衡网络深度后,发现只要对网络的深度、宽度和分辨率进行合理地平衡,就能带来更好的性能。基于这一观察,科学家提出了一种新的缩放方法,使用简单但高效的复合系数均匀地缩放深度、宽度和分辨率的所有尺寸。

据悉,EfficientNet-B7在ImageNet上实现了最先进精度的84.4% Top 1/97.1% Top 5,同时比最好的现有ConvNet小84倍,推理速度快6.1倍;在CIFAR-100(91.7%),Flower(98.8%)和其他3个迁移学习数据集上,也能很好地传输和实现最先进的精度。参数减少一个数量级,效率却提高了10倍(更小,更快)。

与流行的ResNet-50相比,另一款EfficientNet-B4使用了类似的FLOPS,同时将ResNet-50的最高精度从76.3%提高到82.6%。

这么优秀的成绩是如何做到的

这种复合缩放方法的第一步是执行网格搜索,在固定资源约束下找到基线网络的不同缩放维度之间的关系(例如,2倍FLOPS),这样做的目的是为了找出每个维度的适当缩放系数。然后应用这些系数,将基线网络扩展到所需的目标模型大小或算力预算。

与传统的缩放方法相比,这种复合缩放方法可以持续提高扩展模型的准确性和效率,和传统方法对比结果:MobileNet(+ 1.4% imagenet精度),ResNet(+ 0.7%)。

新模型缩放的有效性,很大程度上也依赖基线网络。

为了进一步提高性能,研究团队还通过使用AutoML MNAS框架执行神经架构搜索来开发新的基线网络,该框架优化了准确性和效率(FLOPS)。

由此产生的架构使用移动倒置瓶颈卷积(MBConv),类似于MobileNetV2和MnasNet,但由于FLOP预算增加而略大。然后,通过扩展基线网络以获得一系列模型,被称为EfficientNets。

不仅局限于ImageNet

EfficientNets在ImageNet上的良好表现,让谷歌的科学家希望将其应用于更广泛的网络中,造福更多的人。

在8个广泛使用的迁移学习数据集上测试之后,EfficientNet在其中的5个网络实现了最先进的精度。例如,在参数减少21倍的情况下,实现了CIFAR-100(91.7%)和Flowers(98.8%)。

看到这样的结果,谷歌科学家预计EfficientNet可能成为未来计算机视觉任务的新基础,因此将EfficientNet开源。

华人做出了重要贡献

论文的两位作者,都和中国有关。

第一作者是谷歌的高级软件工程师Mingming Tan,北大博士,在康奈尔大学获得博士后学位。

第二作者Quoc V. Le现在是谷歌的一名软件工程师,在斯坦福获得博士学位,师从著名的人工智能领袖吴恩达。

他在越南农村长大,会英语、普通话、吴语和广东话。小时候家里连电都没有。但他住的地方附近有一个图书馆。Le在图书馆里,如饥似渴的阅读那些伟大发明,小小年纪便梦想有朝一日自己的名字,也能铭刻在人类伟大发明家名人堂上。

14岁的时候,他就幻想一个足够聪明的机器能够帮助人类。这个幻想让他走上了人工智能的道路。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6141

    浏览量

    105087
  • 卷积网络
    +关注

    关注

    0

    文章

    42

    浏览量

    2158

原文标题:谷歌出品EfficientNet:比现有卷积网络小84倍,比GPipe快6.1倍

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络的基本原理与算法

    卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks
    的头像 发表于 11-15 14:47 244次阅读

    spark为什么mapreduce

    spark为什么mapreduce? 首先澄清几个误区: 1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以,显然是错误的 2;DAG计算模型
    的头像 发表于 09-06 09:45 218次阅读

    使用LM7171做非反向放大,为什么输出的讯号设计的放大11?

    我使用LM7171做非反向放大,输入讯号为0~3.3V方波,频率10MHz,放大倍率11(G=1+(R1/R2)),OPA操作电压0-36V,负载分别挂50欧姆及100欧姆,为什么输出的讯号
    发表于 08-19 06:15

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍卷积神经网络
    的头像 发表于 07-11 14:38 797次阅读

    卷积神经网络实现示例

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,主要用于处理具有网格结构的数据,如图像。CNN通过卷积层自动提取图像特征,然后通过全连接层进行
    的头像 发表于 07-03 10:51 370次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 10:49 492次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:40 395次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键技术、常见网络架构以及实际应用案例。 引言 1.1
    的头像 发表于 07-03 09:28 469次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 349次阅读

    卷积神经网络的原理与实现

    核心思想是通过卷积操作提取输入数据的特征。与传统的神经网络不同,卷积神经网络具有参数共享和局部连接的特点,这使得其在处理图像等高维数据时具有更高的
    的头像 发表于 07-02 16:47 498次阅读

    卷积神经网络的基本原理和应用范围

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的基
    的头像 发表于 07-02 15:30 908次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络的基
    的头像 发表于 07-02 14:45 1172次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 560次阅读

    卷积神经网络的优点

    卷积神经网络的优点  卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在图
    的头像 发表于 12-07 15:37 4094次阅读

    卷积神经网络通俗理解

    卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Network
    的头像 发表于 11-26 16:26 1030次阅读