0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

中科院科学家在实现高效圆偏振发光材料方面获得进展

电机技术及应用 来源:YXQ 2019-06-06 11:06 次阅读

近日,中国科学院科学家团队——国家纳米科学中心段鹏飞课题组在构筑高效圆偏振发光材料的研究中取得新进展。相关研究成果相继发表在《德国应用化学》上(Angew. Chem.Int. Ed.2019,58, 4978;Angew. Chem.Int. Ed.2019, 58, 7013-7019)。

圆偏振发光(CPL)是指手性发光物质受激发射出左旋或右旋圆偏振光的现象。具有圆偏振发光性质的材料由于在3D显示、光学存储、光学防伪以及不对称合成等方面的重要应用,近年来越来越受到研究人员的关注,其中发光不对称因子(glum)和发光量子效率(ΦPL)是表征材料圆偏振发光性质的两个重要参数。一般而言,glum是由电偶极跃迁距和磁偶极跃迁距决定的。在有机CPL材料中,一般电偶极跃迁距远大于磁偶极跃迁距。因此,具有较大电偶极的有机小分子往往发光效率高但是发光不对称因子很小。基于此,如何增大有机体系圆偏振发光的不对称因子,更进一步如何构筑兼具高发光不对称因子和高发光量子效率的有机材料依然是该研究领域的关键性问题。

在传统提升有机小分子圆偏振发光不对称性的方法中,分子自组装是一种有效的手段。但是对于一些聚集发光猝灭性质的分子来说,该方法会同时限制材料的发光效率。为解决这一问题,他们选择了结晶性质优异、结构规整的沸石类金属有机框架材料ZIF-8为模板,通过配体交换的方式将具有圆偏振发光性质的小分子重组在ZIF-8的表面骨架上。研究结果显示,配体交换后手性ZIF的圆偏振发光glum相比初始的小分子溶液提高了一个数量级,同时发光量子效率也得到了提升(Angew. Chem.Int. Ed.2019,58, 4978;图1)。进一步的材料表征揭示了手性分子在ZIF-8表面的高度有序组装性质,这是发光不对称因子提高的根源。而与锌离子配位后的手性分子构象得到锁定,抑制了其非辐射跃迁速率,从而同时提高了发光效率。该研究成果还被Angew. Chem. Int. Ed.的高级副主编推荐到学术网站平台(ChemistryViews.org)进行了报道。

在最近的研究中,段鹏飞课题组和刘鸣华团队合作制备了具有发光性质的手性电荷转移(charge transfer, CT)复合物材料,该报道首次实现了分子间电荷转移复合物的圆偏振发光。并且利用电荷转移复合物具有顺磁性的性质,得到了较大的圆偏振发光不对称因子(Angew. Chem.Int. Ed.2019, 58, 7013;图2)。在电荷转移复合物的形成中,由于电子受体最低未占据分子轨道(LUMO)能级较深,很多形成的复合物并不发光。在这个工作中,他们合成了含有芘的手性发光分子作为电子供体并且选择了具有合适能级的四氰基苯(TCNB)作为电子受体。手性电子给体与TCNB不仅可以形成手性CT复合物,而且还具有CT态圆偏振发光性能,得到的发光不对称因子glum高达±0.017。同时他们利用多种方法得到了手性CT复合物,包括共结晶、共研磨、旋涂等。更有趣的是电子给受体溶液混合之后在超声的作用下可以形成CT复合物的超分子凝胶。在缺少像氢键等较强分子间非共价相互作用的情况下,通过CT作用形成超分子凝胶还是比较少见的,并且超分子凝胶也表现出非常强的圆偏振发光。

ZIF-8界面自组装同时放大圆偏振发光不对称因子和发光量子效率

具有高发光不对称因子的手性电荷转移复合物

这些工作为提升有机体系发光不对称因子,以及构筑兼具高发光不对称因子和发光量子效率的有机材料开辟了新的思路和方法。中科院化学研究所研究员韩布兴在《物理化学学报》上对这些工作以“highlight”形式作了总结点评(Acta Phys. -Chim. Sin.2019, DOI: 10.3866/PKU.WHXB201904088)。该系列研究工作得到国家自然科学基金和科技部重点研发计划等的支持。(来源:中国科学院)

南京大学郑佑轩课题组开发手性铂配合物及其磷光CP-OLEDs

手性发光材料由于具有特殊的左、右手性结构,除了能够发射出普通的光致发光外,还能够发射出圆偏振光(CPL),以手性发光材料为发光中心制备能够直接发射出圆偏振电致发光(CPEL)的器件,即CP-OLEDs,在3D显示领域有极大的应用前景。但国际上的文献报道很少,并且器件的亮度和效率普遍很低,效率滚降严重,而且非对称g因子也不稳定,不能满足应用的需求。

南京大学郑佑轩课题组一直从事高性能磷光配合物和热延迟荧光(TADF)材料的开发,并研究其OLED器件性能。近期开发了一种手性铂配合物及其磷光CP-OLEDs,最大亮度提高到11590 cd/m2,最大外量子效率达到18.81%,半透明阴极的器件g因子相对常规结构的器件提高了3倍(Chem. Eur. J.2019, 25, 5672,博士生晏志平为第一作者)。并利用手性八氢联萘酚作为新的手性源,结合TADF骨架设计合成了系列高性能的手性发光材料(CP-TADF),具有聚集诱导发光(AIE)等特点,并制备了高效率CP-OLEDs。该研究中,基于二苯胺的CP-TADF材料的发光效率达到82%,其CP-OLEDs的亮度达到25000 cd m-2,最大外量子效率为12.4%(J. Mater. Chem. C,2019, DOI: 10.1039/C9TC01632E,研究助理吴正光博士为论文第一作者)。

在此基础上,将二苯胺替换为咔唑基团可以得到性能更加优秀的CP-TADF分子,其发光量子产率高达92%,DEst只有0.037 eV。制备的掺杂CP-OLEDs亮度高达46651 cd m-2,最大电流效率为93.7 cd A-1,最大功率效率为59.3 lm W-1,最大外量子效率为32.6%。器件的效率滚降非常低,当亮度分别达到1000、3000和5000 cd m-2时,外量子效率依然分别保持在31.7%、31.6%和30.6%。这些性能是目前报道的所有CP-OLEDs中最好的。并且器件表现出强的圆偏振电致发光信号,gEL分别为-1.94×10-3和+2.3×10-3。该工作以“Chiral Octahydro-binaphthol Compound-based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized Electroluminescence with Superior EQE of 32.6% and Extremely Low Efficiency Roll-off”为题发表在Adv. Mater.(2019, 1900524)上。研究助理吴正光博士为论文第一作者,郑佑轩教授为该论文的通讯作者,南京大学左景林教授、王毅副教授及潘毅教授也对该工作提出了宝贵建议。

以上研究工作得到了国家自然科学基金(51773088)等经费的资助。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 发光材料
    +关注

    关注

    1

    文章

    23

    浏览量

    8905
  • 中科院
    +关注

    关注

    1

    文章

    64

    浏览量

    11914

原文标题:特斯拉全铝车身生产全过程,绝对涨知识!

文章出处:【微信号:wwygzxcpj,微信公众号:电机技术及应用】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    院士评选2024年中国/世界十大科技进展,清华大学传感芯片技术入榜(附全名单)

    1月22日上午,由 中国科学院、中国工程主办的“两院士评选2024年中国/世界十大科技进展新闻” 江苏省南京市揭晓。 两
    的头像 发表于 01-23 18:08 419次阅读
    两<b class='flag-5'>院</b>院士评选2024年中国/世界十大科技<b class='flag-5'>进展</b>,清华大学传感芯片技术入榜(附全名单)

    基于光偏振与光学调制实现白光干涉相移

    基于光的偏振特性和一些光学元件对光的调制作用,实现白光干涉中的光学相移原理是一个复杂而精细的过程。以下是对这一原理的详细解释: 一、光的偏振特性 光的偏振是指光波
    的头像 发表于 01-15 15:07 253次阅读
    基于光<b class='flag-5'>偏振</b>与光学调制<b class='flag-5'>实现</b>白光干涉相移

    上海光机所在二维材料偏振光电探测器研究方面取得进展

    图1.平行和交叉偏振拉曼配置下测量ReS2 Ag-like模式的峰值强度与偏振角度的关系。 近期,中国科学院上海光学精密机械研究所空天激光技术与系统部王俊研究员团队与中国
    的头像 发表于 12-11 06:31 303次阅读
    上海光机所在二维<b class='flag-5'>材料</b><b class='flag-5'>偏振</b>光电探测器研究<b class='flag-5'>方面</b>取得<b class='flag-5'>进展</b>

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 阅读这一章后,我对未来生命科学的发展充满了期待。我相信,人工智能技术的推动下,生命科学将取得更加显著
    发表于 10-14 09:21

    上海科学家精准操控原子“人造”蓝宝石 为低功耗芯片研制开辟新路

    当芯片中的晶体管随着摩尔定律向纳米级不断缩小时,发挥绝缘作用的介质材料却因为厚度缩小而性能快速降低。如何为更小的晶体管匹配更佳的介质材料,成为集成电路领域科学家们的苦苦追寻的目标。 如今,中国
    的头像 发表于 08-09 15:38 461次阅读

    中科技大学偏振光电探测器领域获新进展

    图1. CdSb2Se3Br2/WSe2异质结实现可重构的高PR值偏振光探测器 近日,《先进材料》(Advanced Materials)期刊在线刊发了华中科技大学
    的头像 发表于 08-08 06:28 470次阅读
    华<b class='flag-5'>中科</b>技大学<b class='flag-5'>在</b><b class='flag-5'>偏振</b>光电探测器领域获新<b class='flag-5'>进展</b>

    新华社:突破性成果!祝贺我国科学家成功研发这一传感器!

    6月25日,新华社以《突破性成果!祝贺我国科学家》为标题,报道了由我国科学家研发的传感器成果。 我国科学家研发高通道神经探针实现猕猴全脑尺度神经活动监测 神经探针是一种用来记录神经活动
    的头像 发表于 06-27 18:03 586次阅读
    新华社:突破性成果!祝贺我国<b class='flag-5'>科学家</b>成功研发这一传感器!

    中科院重庆研究势垒可光调谐新型肖特基红外探测器研究获进展

    传统肖特基探测器和势垒可光调谐的肖特基红外探测器的对比 近日,中科院重庆绿色智能技术研究微纳制造与系统集成研究中心《创新》(The Innovation)上发表了题为Schottky
    的头像 发表于 06-25 06:27 383次阅读
    <b class='flag-5'>中科院</b>重庆研究<b class='flag-5'>院</b><b class='flag-5'>在</b>势垒可光调谐新型肖特基红外探测器研究获<b class='flag-5'>进展</b>

    前OpenAI首席科学家创办新的AI公司

    消息在业界引起了广泛关注,因为苏茨克维曾是OpenAI的联合创始人及首席科学家,并在去年在OpenAI董事会上扮演了重要角色。
    的头像 发表于 06-21 10:42 609次阅读

    中科院半导体所在高性能电泵浦拓扑激光器研发方面进展

    优点成为研究热点,但基于电注入的拓扑激光器仍处于研究起步阶段。因此,发展出提高电泵浦拓扑激光器输出功率的设计思路和技术方案至关重要。 近期,中科院半导体研究所研究员刘峰奇团队高性能电泵浦拓扑激光器研发方面取得
    的头像 发表于 06-18 06:33 487次阅读
    <b class='flag-5'>中科院</b>半导体所在高性能电泵浦拓扑激光器研发<b class='flag-5'>方面</b>获<b class='flag-5'>进展</b>

    高维光场探测领域取得突破性进展

    中科院长春光机所获悉,该所科研团队在国际上首次利用单个器件通过单次测量,对宽带光谱范围内具有任意变化的偏振和强度的高维光场进行了全面表征,从而实现了高维度光场信息探测这一突破性进展
    的头像 发表于 05-31 06:34 346次阅读
    <b class='flag-5'>在</b>高维光场探测领域取得突破性<b class='flag-5'>进展</b>

    中国科学家研发高性能电泵浦拓扑激光器取得重大突破 

    近期,中科院半导体研究所刘峰奇研究团队电泵浦拓扑激光器研发领域取得最新突破:成功引入表面金属狄拉克拓扑腔(SMDC)设计。
    的头像 发表于 05-29 10:24 976次阅读
    中国<b class='flag-5'>科学家</b>研发高性能电泵浦拓扑激光器取得重大突破 

    本源量子参与的国家重点研发计划青年科学家项目启动会顺利召开

    2024年4月23日,国家重点研发计划“先进计算与新兴软件”重点专项“面向复杂物理系统求解的量子科学计算算法、软件、应用与验证”青年科学家项目启动会暨实施方案论证会在合肥顺利召开。该项目由合肥综合性国家科学中心人工智能研究
    的头像 发表于 05-11 08:22 941次阅读
    本源量子参与的国家重点研发计划青年<b class='flag-5'>科学家</b>项目启动会顺利召开

    国科炭美完成1亿天使+轮融资,千吨硬炭生产线及材料研发进展顺利

    据悉,该公司专注于满足锂、钠离子电池及超级电容行业需求,重点研发硬炭和多孔炭等碳基储能材料。国科炭美作为中科院山西煤化所科技成果转化企业,拥有一支由科学家和工程师组成的专业化团队,技术实力雄厚。
    的头像 发表于 05-09 17:35 871次阅读

    量子梦

    可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究的进展,加快新技术的开发。 总
    发表于 03-13 18:18