0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

哥本哈根大学开发反“枪手”AI 识别作业代写准确率接近90%

Hf1h_BigDataDig 来源:fqj 2019-06-06 14:17 次阅读

近日,哥本哈根大学的研究人员的最新研究称,刚刚开发出一款“反枪手代写”的AI系统。这款系统意图通过智能写作分析技术,来检测论文作弊。可以根据你的写作习惯,确定论文究竟是你自己写的作业还是由他人代写。根据对13万份书面作业的分析,科学家们可以以近90%的准确率检测出学生究竟是自己写的作业,还是由代笔撰写。基本上可以达到“代写”作业一抓一个准的结果了。

高中代写成风,哥本哈根大学的神操作。这套针对学生论文作弊行为的研究,已经在哥本哈根大学计算机科学系(DIKU)进行了几年了,最初,这款研究是针对丹麦的高中生进行的。在丹麦,高中目前主要使用的作业查重平台叫做Lectio,可以用来检查学生的作业中是否有段落是直接复制先前提交的作业的。然而,随着各类线上服务平台的盛行,在丹麦高中生中,找人代写作业变得越发容易。面对这种情况,学校一直缺乏有效的检测手段。

学习轨迹项目或“SRP”(丹麦语的“Studie Retnings Projekt”)是丹麦高中毕业生的必修跨学科课程,也是一项非常重要的书面作业。在这个项目中的作弊现象尤其引人注目。由于SRP对于毕业十分重要,很多学生们在丹麦竞拍网站Den Bla Avis上发布他们的写作任务来找人代写。和中国的老师和大多数查重系统一样,Lectio只能查重,没法判断一份作业是否是找人代写的。哥本哈根大学的一些院系一直和很多高中有着SRP项目的合作,深受代写作弊行为之害,一直在探究解决之道。这所大学的计算机科学系DABAI项目组决定教教这些偷懒的高中生们“做人”。

DABAI(丹麦大数据分析驱动创新中心)是一个成立于2016年的丹麦国家研究中心。除了研究机器学习的高效算法,这个研究小组本来就对学生教育特别关注。之前,他们曾研究了“优化学生的个性化学习”、“提高教师洞察力”等教育项目。

名叫“枪手”的反枪手神器

这个防作弊程序被叫做Ghostwriter(枪手),它本质上属于一种基于机器学习和神经网络技术的一款文本分析程序。

项目组成员Stephan Lorenzen博士称,这款程序可以比较该学生最近提交和以前提交的文章来识别写作风格的差异。

“程序会关注单词长度、句子结构以及单词的使用方式等诸多特征。例如,它会察觉‘for example’被写成了‘ex’,还是‘e.g.,’。”

其数据集来自为丹麦高中提供Lectio平台的MaCom公司,该公司覆盖了丹麦90%以上的高中,他们为GhostWriter项目的研究人员提供了13万份不同高中学生书面作业。

这个研究组认为,这款产品非常具有实际效用,很多学校对于找出“论文究竟是谁写的”这个问题有着越来越高的技术需求。

但Stephan Lorenzen博士也认为,“在此之前,还需要认真讨论一下应用这项技术所面临的伦理问题。我们不能把这个程序得到的结论作为判别是否作弊的唯一标准,更应该把它看作一份辅助性的证据。”

Ghostwriter是怎么工作的?

Ghostwriter程序使用Siamese 神经网络来区分不同文本的写作风格:通过大量数据的训练,学习不同写作风格的外在表现(representation),然后进行比对。

这个项目分两步来解决作者身份验证问题。首先是解决了计算两个文本之间写作风格相似性的问题,主要通过使用Siamese网络学习相似度函数s:T×T→[0,1]。其次是再解决作者A的验证问题,通过比对未知作者文本X和已知是作者A的文本T之间的相似性。

网络方面,他们考虑使用不同的输入通道考虑几种不同的体系结构(例如,char,word,POS-tags),最终确定了一种表现最佳的网络架构:

哥本哈根大学开发反“枪手”AI 识别作业代写准确率接近90%

Best performing network

编码部分包括一个字符嵌入(Embd),然后是两个不用的卷积层,每个卷积层后面都有一个全局最大池化层(GMP)。

在比较部分,他们首先计算合并层中的编码之间的绝对差值,然后,应用4个密集层,每层有500个神经元,最后使用具有两个输出的softmax层来进行归一化。

他们将数据集分为三份,T-train用于训练,T-val用于训练提前停止和selecting Cs,T-test仅用于估测试模型。

哥本哈根大学开发反“枪手”AI 识别作业代写准确率接近90%

经过训练,模型的准确率达到了87.5%。

哥本哈根大学开发反“枪手”AI 识别作业代写准确率接近90%

最后实现的功能就是,当学生提交作业时,该网络会将其与以前的作业进行比较。对于每个作业,神经网络都会计算出一个百分数,用于表示新旧作业的相似性。然后,通过综合考虑新旧作业相似性、交作业时间等多种因素计算出一个加权平均值。这个最终值就可以用来表示新作业和学生写作风格之间的相似性。

这一研究已经被发表在一篇名为《识别高中代写“枪手”》的论文中。

除了代写作业,Ghostwriter的技术也可以应用于社会的其他地方。

例如,该程序可辅助警方的文档审查员执行各类文件的真伪分析任务,比如一份商业合同是否是伪造的;或者一个离奇的自杀案中,死者留下了一封遗书,这封遗书是不是死者本人写的等等。

“与警方合作将是一件有趣的事情。警方现有的方法是聘用文件审查员来定性的比较文本之间的相似性和差异。而我们的方法则适用于大数据并自动找到其中潜藏的模式。我认为结合两者将有利于警察开展工作。”Lorenzen说,他强调这里也同样需要讨论其面临的伦理问题。

这项利用人工智能来检测作业中作弊行为的技术,具有广泛的应用前景。

目前,它还被用来分析Twitter文本,以确定文本内容是由真实用户撰写的,还是由水军或机器人编写的。也就是说,淘宝店铺雇佣水军好评,很有可能也能被识别出来。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1789

    文章

    46576

    浏览量

    236902
  • 机器学习
    +关注

    关注

    66

    文章

    8340

    浏览量

    132281

原文标题:“翟天临”克星?哥本哈根大学开发反“枪手”AI,识别作业代写准确率接近90%

文章出处:【微信号:BigDataDigest,微信公众号:大数据文摘】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    微机保护装置预警功能的准确率

    异常状态。 微机保护装置的预警功能准确率是衡量其性能的重要指标,它直接关系到装置能否及时准确地检测潜在的故障或异常情况,从而预防事故的发生。 准确率影响因素: 1.硬件性能:高精度的传感器和强大的数据处理单元直
    的头像 发表于 11-03 16:10 91次阅读

    ai人工智能回答准确率高吗

    AI可能表现出较高的准确率。例如,在图像识别、语音识别等领域,经过大量训练的AI系统通常能够取得令人满意的
    的头像 发表于 10-17 16:30 1029次阅读

    人员超员识别系统 作业区域超员预警系统

    在当今复杂的生产作业与社会管理场景中,人员管理的精准性和高效性变得愈发重要。人数识别、人员超员识别系统、作业区域超员预警系统以及特殊岗位人员达标监测等,都是保障安全生产、提高运营效率和
    的头像 发表于 10-08 17:08 125次阅读
    人员超员<b class='flag-5'>识别</b>系统 <b class='flag-5'>作业</b>区域超员预警系统

    NIUSB6009 采集准确率的问题?

    NIUSB6009 采集准确率的问题? 一、本人做一个中间继电器电性能实验的装置 1、PLC带动中间继电器吸合和释放,(吸合用时1.5秒,释放用时1.5秒)周而复始的运动。 2、中间继电器的触头负载
    发表于 09-23 15:59

    基于迅为RK3568/RK3588开发板的AI图像识别方案

    https://www.bilibili.com/video/BV1G54y1A7nf/?spm_id_from=333.999.0.0 迅为RK3568/RK3588开发AI识别演示方案,包括
    发表于 08-28 09:50

    NRK3301识别语音芯片在智能按摩椅中的应用与体验提升

    了新的变革。‌一、高识别准确率和快速响应‌NRK3301语音识别芯片采用最新的神经网络(‌TDNN)‌算法,‌具有高识别准确率和低误判
    的头像 发表于 08-03 08:07 323次阅读
    NRK3301<b class='flag-5'>识别</b>语音芯片在智能按摩椅中的应用与体验提升

    什么是离线语音识别芯片?与在线语音识别的区别

    离线语音识别芯片适用于智能家电等,特点为小词汇量、低成本、安全性高、响应快,无需联网。在线语音识别功能更广泛、识别准确率高,但依赖稳定网络。
    的头像 发表于 07-22 11:33 335次阅读

    英伟达 AI 芯片供应存在“巨大瓶颈”,意法半导体推出ST BrightSense图像传感器生态系统

    识别等功能。传感器的基本原理是:由于材料的可变形性不同,当与被测物体接触时,BITS会产生独特的摩擦电输出指纹。此外,由于不同的电子亲和力,BITS阵列可以准确识别材料类型(准确率为9
    的头像 发表于 07-09 08:44 227次阅读
    英伟达 <b class='flag-5'>AI</b> 芯片供应存在“巨大瓶颈”,意法半导体推出ST BrightSense图像传感器生态系统

    基于Tiny AI技术的婴儿哭声事件离线检测方案

    基于Tiny AI技术的婴儿哭声事件离线检测模型,基于Arm Cortex/Risc V微处理器开发,芯片资源占用极少,有极高的准确率和极低的误识别率
    的头像 发表于 06-17 15:25 559次阅读

    OpenAI推出专用的AI检测工具

    OpenAI最近推出了一款全新的AI检测工具,这款工具专门针对由DALL·E 3模型生成的图片。令人印象深刻的是,该工具能够精准识别出这类图片,其准确率高达98%。这一举措的主要目的是为了协助研究人员在内容真实性方面进行深入的研
    的头像 发表于 05-09 10:01 470次阅读

    开发者手机 AI - 目标识别 demo

    功能简介 该应用是在Openharmony 4.0系统上开发的一个目标识别AI应用,旨在从上到下打通Openharmony AI子系统,展示Openharmony系统的
    发表于 04-11 16:14

    自动雨量监测系统(准确地预测降雨情况,提高预报的准确率

    对工程的影响,及时采取相应的措施,保障工程的安全运行。在气象预报方面,它可以帮助气象工作者更准确地预测降雨情况,提高预报的准确率
    的头像 发表于 03-28 14:59 451次阅读

    在全志V853平台上成功部署深度学习步态识别算法

    统的步态识别准确率达到了94.9%,背包行走和穿外套行走条件下识别准确率分别达到了87.9%与71.0%。 步态识别作为一种新兴的生物
    发表于 03-04 10:15

    亚马逊云科技助力沐瞳应用生成式AI技术打造卓越游戏体验 赋能业务决策

    业务决策。沐瞳旗下游戏产品《Mobile Legends: Bang Bang》(以下简称《MLBB》)基于亚马逊云科技和其合作伙伴在生成式AI领域的创新技术与解决方案,显著提升辱骂识别与舆情分析的响应速度与准确率,辱骂
    发表于 02-22 11:20 211次阅读
    亚马逊云科技助力沐瞳应用生成式<b class='flag-5'>AI</b>技术打造卓越游戏体验 赋能业务决策

    亚马逊云科技助力沐瞳应用生成式AI技术打造卓越游戏体验 赋能业务决策

    决策。沐瞳旗下游戏产品《Mobile Legends: Bang Bang》(以下简称《MLBB》)基于亚马逊云科技和其合作伙伴在生成式AI领域的创新技术与解决方案,显著提升辱骂识别与舆情分析的响应速度与准确率,辱骂
    的头像 发表于 02-22 09:25 387次阅读