0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶——雷达数据的处理

ml8z_IV_Technol 来源:YXQ 2019-06-10 14:43 次阅读

360°的激光数据可视化后可以得到点云数据。激光雷达的点云数据结构比较简单。下面我们就以N线激光雷达为例来讲解点云的数据结构。

在实际的无人驾驶系统中,每一帧的数据都会有时间戳,根据时间戳进行后续和时间有关的计算(如距离信息的微分等)。因此N线激光雷达的点云数据结构如下图。

每一线点云的数据结构又是由点云的数量和每一个点云的数据结构组成。由于激光雷达的数据采集频率和单线的点云数量都是可以设置的,因此1线点云数据中需要包含点云数量这个信息。

最底层的是单个点云的数据结构。点的表达既可以使用theta/r的极坐标表示,也可以使用x/y/z的3维坐标表示。每个点云除了坐标外,还有一个很重要的元素,那就是激光的反射强度。激光在不同材料上的反射强度是不一样的。以3维坐标的表示方法为例,单个点云的数据结构如下图。X/Y/Z方向的偏移量是以激光雷达的安装位置作为原点。

激光雷达点云数据的一般处理方式是:数据预处理(坐标转换,去噪声等),聚类(根据点云距离或反射强度),提取聚类后的特征,根据特征进行分类等后处理工作。我们就以百度Apollo 2.0目前已开放的功能为例,看看激光雷达能完成哪些工作。

1.障碍物检测与分割

利用高精度地图限定感兴趣区域(ROI,Region ofInterest)后,基于全卷积深度神经网络学习点云特征并预测障碍物的相关属性,得到前景障碍物检测与分割。

2. 可通行空间检测

利用高精度地图限定ROI后,可以对ROI内部(比如可行驶道路和交叉口)的点云的高度及连续性信息进行判断点云处是否可通行。

3.高精度电子地图制图与定位

利用多线激光雷达的点云信息与地图采集车载组合惯导的信息,进行高精地图制作。自动驾驶汽车利用激光点云信息与高精度地图匹配,以此实现高精度定位。

4.障碍物轨迹预测

根据激光雷达的感知数据与障碍物所在车道的拓扑关系(道路连接关系)进行障碍物的轨迹预测,以此作为无人车规划(避障、换道、超车等)的判断依据。

当前人工智能算法还不够成熟,纯视觉传感器的无人驾驶方案在安全性上还存在较多问题,因此现阶段的无人车的开发还离不开激光雷达。不过成本是激光雷达普及所遇到的最大问题。毕竟一款比车还贵的传感器是车企无法接受的。随着技术的发展,利用固态扫描技术的固态激光雷达逐渐成为车用激光雷达的主流技术。

Quanergy公司的Solid StateLiDAR S3在CES 2017上获得了汽车智能类(VehicleIntelligence Category)的最高奖项——最佳创新奖(Best ofInnovation Award),则再一次让Quanergy利用固态扫描技术赚足了眼球。而作为车用激光雷达的老大Velodyne也当仁不让,在CES展之前就发布消息,称其与EPC(Efficient PowerConversion Corporation)共同研发有望将固态激光雷达成本降至50美金的核心芯片。当然,展会上还有Innoviz和TriLumina也宣称要推出固态激光雷达。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 雷达
    +关注

    关注

    50

    文章

    2906

    浏览量

    117389
  • 自动驾驶
    +关注

    关注

    783

    文章

    13716

    浏览量

    166218

原文标题:自动驾驶基础——LiDAR数据的处理

文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆汽车每天产生的
    的头像 发表于 11-22 15:07 813次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的<b class='flag-5'>数据</b>标注类别分享

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆汽车每天产生的
    的头像 发表于 11-22 14:58 177次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的<b class='flag-5'>数据</b>标注类别分享

    激光雷达自动驾驶中的应用

    自动驾驶车辆提供必要的环境感知能力。 1. 激光雷达的工作原理 激光雷达系统通常包括一个激光发射器、一个接收器、一个旋转的机械部件(用于扫描环境)以及一个处理接收到的
    的头像 发表于 10-27 10:34 481次阅读

    自动驾驶技术的典型应用 自动驾驶技术涉及到哪些技术

    自动驾驶技术的典型应用 自动驾驶技术是一种依赖计算机、无人驾驶设备以及各种传感器,实现汽车自主行驶的技术。它通过使用人工智能、视觉计算、雷达、监控装置和全球定位系统等技术,使
    的头像 发表于 10-18 17:31 559次阅读

    聊聊自动驾驶离不开的感知硬件

    的感知硬件。自动驾驶感知硬件的主要功能是帮助车辆“看见”和“理解”周围环境,为驾驶决策提供必要的实时信息。今天智驾最前沿就带大家来盘点常见的感知硬件!   激光雷达(LiDAR) 1.1 激光
    的头像 发表于 08-23 10:18 427次阅读

    FPGA在自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA在
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    数据处理和预处理,实现实时计算和反馈。 二、数据传输与处理FPGA在自动驾驶中扮演着数据传输和
    发表于 07-29 17:09

    自动驾驶汽车如何识别障碍物

    自动驾驶汽车识别障碍物是一个复杂而关键的过程,它依赖于多种传感器和技术的协同工作。这些传感器主要包括激光雷达(LiDAR)、雷达、摄像头以及超声波雷达等,它们各自具有不同的工作原理和优
    的头像 发表于 07-23 16:40 1014次阅读

    自动驾驶识别技术有哪些

    自动驾驶的识别技术是自动驾驶系统中的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。自动驾驶识别技术主要包括多种传感器及其融合技术,以及基于这些传感器数据
    的头像 发表于 07-23 16:16 562次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    模态精准感知信息,使自动驾驶系统可以实时精准地感知道路上的各种状况。 昱感微融合感知产品方案创新性地 将可见光摄像头、红外摄像头以及4D毫米波雷达的探测数据在前端(数据获取时)交互,
    发表于 04-11 10:26

    自动驾驶汽车技术 | 车载雷达系统

    自动驾驶汽车技术 | 车载雷达系统
    的头像 发表于 03-20 08:09 2925次阅读
    <b class='flag-5'>自动驾驶</b>汽车技术 | 车载<b class='flag-5'>雷达</b>系统

    自动驾驶领域的数据集汇总

    自动驾驶论文哪少的了数据集,今天笔者将为大家推荐一篇最新的综述,总结了200多个自动驾驶领域的数据集,大家堆工作量的时候也可以找一些小众的数据
    的头像 发表于 01-19 10:48 968次阅读
    <b class='flag-5'>自动驾驶</b>领域的<b class='flag-5'>数据</b>集汇总

    语音数据集在自动驾驶中的应用与挑战

    随着人工智能技术的快速发展,自动驾驶汽车已经成为交通领域的研究热点。语音数据集在自动驾驶中发挥着重要的作用,为驾驶员和乘客提供了更加便捷和安全的交互方式。本文将详细介绍语音
    的头像 发表于 12-25 09:48 529次阅读

    LabVIEW开发自动驾驶的双目测距系统

    LabVIEW开发自动驾驶的双目测距系统 随着车辆驾驶技术的不断发展,自动驾驶技术正日益成为现实。从L2级别的辅助驾驶技术到L3级别的受条件约束的
    发表于 12-19 18:02

    自动驾驶的新宠:毫米波雷达技术的探索与挑战

    随着科技的不断进步,自动驾驶汽车的发展已经成为交通产业的一大趋势。在这个过程中,毫米波雷达技术的应用发挥着至关重要的作用。本文将对毫米波雷达技术进行详细介绍,并分析其在自动驾驶领域的应
    的头像 发表于 12-07 11:32 1662次阅读
    <b class='flag-5'>自动驾驶</b>的新宠:毫米波<b class='flag-5'>雷达</b>技术的探索与挑战