近日,Facebook PyTorch 团队推出了全新 API PyTorch Hub,提供模型的基本构建模块,用于提高机器学习研究的模型复现性。PyTorch Hub 包含一个经过预训练的模型库,内置对Colab的支持,而且能够与Papers With Code集成。另外重要的一点是,它的整个工作流程大大简化。
简化到什么程度呢?Facebook 首席 AI 科学家Yann LeCun 兼图灵奖图灵奖得主Yann LeCun发表 Twitter强烈推荐,使用PyTorch Hub,无论是ResNet、BERT、GPT、VGG、PGAN 还是 MobileNet 等经典模型,只需输入一行代码,就能实现一键调用。
Twitter 一发,立刻引来众多网友评论点赞,并有网友表示希望看到PyTorch Hub 与TensorFlow Hub的区别。
模型复现是许多领域的基本要求,尤其是在与机器学习相关的邻域中。然而,许多机器学习相关的出版物,要么不可复现,要么难以复现。随着出版物数量的不断增长(包括在 arXiv 上发表的成数万篇论文,以及会议提交的大量论文),模型复现比以往任何时候都更加重要。虽然这些出版物大多数都包含代码和训练好的模型,但如果用户想复现这些模型,还需要做大量的额外的工作。
今天,我们很荣幸地宣布推出 PyTorch Hub,它是一个非常简单的API,并且具有极其简单的工作流程。它提供模型的基本构建模块,用于提高机器学习研究的模型复现性。PyTorch Hub 包含一个经过预训练的模型库,专门用于促进研究的可重复性和快速开展新的研究。PyTorch Hub 内置了对 Colab的 支持,并且能够与 Papers With Code 集成。目前 PyTorch Hub 已包含一系列广泛的模型,包括分类器和分割器、生成器、变换器等。
-
机器学习
+关注
关注
66文章
8408浏览量
132576 -
pytorch
+关注
关注
2文章
808浏览量
13202
原文标题:PyTorch Hub发布获Yann LeCun强推!一行代码调用经典模型
文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论