0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

密集型计算的终极挑战——自动驾驶汽车的人工智能训练

你好张江 来源:YXQ 2019-06-27 14:37 次阅读

近日,英伟达(NVIDIA)发布了其最新研发成果——超级计算机DGX SuperPOD。其强大的运算能力名列全球运算速度最快排行榜第22名,意欲加快自动驾驶汽车相关技术的开发及部署。

据悉,该超级计算机系统的搭建仅用时3个星期,采用了96台NVIDIA DGX-2H超级计算机与Mellanox互联技术。其处理能力高达9.4 petaflops,用于训练安全自动驾驶汽车所需要的海量深度神经网络

自动驾驶汽车的人工智能训练可以说得上是密集型计算的终极挑战。

一台数据收集车辆每小时能生成1TB数据。整个车队经过数年行驶后,其数据量将会很快达到几PB(千兆兆字节)量级。这些数据会被用来根据道路规则对算法进行训练,并且还会被用来找出车辆内运行的深度神经网络的潜在故障。

英伟达人工智能基础设施副总裁Clement Farabet表示:“若要保持人工智能领先地位,需要在计算基础设施方面保持领先。很少有像训练自动驾驶汽车这样对人工智能有如此之高的需求,其需要对神经网络进行数万次的反复训练,以满足极高精度。对于如此大规模的处理能,DGX SuperPOD无可替代。”

DGX SuperPOD内含1,536颗NVIDIA V100 Tensor Core GPU,由NVIDIA NVSwitch及 Mellanox网络结构相联接,为其提供强力支持,使其以同等大小的超级计算机所无可匹敌的性能处理数据。该套系统能够不间断运行,优化自动驾驶软件,并以前所未有的周转时间反复训练神经网络。

例如,DGX SuperPOD软硬件平台能够在不到2分钟的时间之内完成人工智能模型ResNet-50的训练,而在2015年,即便采用当时最先进的单颗NVIDIA K80 GPU,也需要25天才能完成训练任务,如今DGX SuperPOD生成结果的速度较之前加快了18,000倍。

值得一提的是

具备同等性能的其他TOP500超级计算机系统都由数千台服务器构建而成,而DGX SuperPOD占地面积更少,其体积比这些同等系统小400倍左右。

通过构建类似DGX SuperPOD这样的超级计算机,使英伟达学会如何设计面向大规模人工智能机器的系统。这是超级计算机技术领域内的一大进步,让大规模计算能力得以跨出学术界,为那些想要使用高性能计算加快其各种计划的交通运输公司及其他行业所用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238245
  • 自动驾驶
    +关注

    关注

    784

    文章

    13784

    浏览量

    166382

原文标题:英伟达超级计算机,用大数据帮你调教自动驾驶汽车

文章出处:【微信号:zjpark,微信公众号:你好张江】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级
    的头像 发表于 11-22 15:07 877次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶
    的头像 发表于 10-29 13:42 502次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>安全吗?

    人工智能的应用领域有自动驾驶

    的核心技术 自动驾驶汽车的核心依赖于人工智能,尤其是机器学习和深度学习技术。这些技术使得汽车能够通过传感器收集大量数据,并实时进行分析。以下是一些关键
    的头像 发表于 10-22 16:18 493次阅读

    浅谈自动驾驶技术的现状及发展趋势

    自动驾驶技术,作为人工智能计算机科学领域的一项重要应用,近年来取得了显著的发展与进步。它不仅代表着汽车产业的未来方向,更预示着人类出行方式的深刻变革。 一、
    的头像 发表于 10-22 14:33 992次阅读

    自动驾驶技术的典型应用 自动驾驶技术涉及到哪些技术

    自动驾驶技术的典型应用 自动驾驶技术是一种依赖计算机、无人驾驶设备以及各种传感器,实现汽车自主行驶的技术。它通过使用
    的头像 发表于 10-18 17:31 701次阅读

    Autobrains推出自动驾驶定位技术

    近日,人工智能汽车解决方案提供商Autobrains宣布推出其最新创新——自动驾驶定位技术Air2Road。
    的头像 发表于 10-17 16:45 476次阅读

    FPGA在自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA在处理自动驾驶中复杂的图像识别、传感器数据处理等
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    低,适合用于实现高效的图像算法,如车道线检测、交通标志识别等。 雷达和LiDAR处理:自动驾驶汽车通常会使用雷达和LiDAR(激光雷达)等多种传感器来获取环境信息。FPGA能够协助完成这些传感器
    发表于 07-29 17:09

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    人工智能驾驶技术包括哪些技术

    人工智能驾驶技术,也称为自动驾驶技术,是一种利用计算机视觉、机器学习、人工智能等多种先进技术,使汽车
    的头像 发表于 07-23 16:31 1184次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    /L4级自动驾驶赛跑的元年。 马斯克评论FSD 12.3版本的左转弯操作就像人类司机一样。如果FSD 12.3版本成功,将基本颠覆目前市场上的智能驾驶技术路线。基于“数据/算法/算力”的无人
    发表于 04-11 10:26

    边缘计算自动驾驶系统如何结合

    当前自动驾驶中,大规模的人工智能算法模型和大规模数据集中化分析均放在云端进行。因为,云端拥有大量的计算资源,可以在极短的时间内完成数据的处理,但是仅依靠云端为自动驾驶
    发表于 03-25 09:26 534次阅读
    边缘<b class='flag-5'>计算</b>与<b class='flag-5'>自动驾驶</b>系统如何结合

    鸿蒙原生应用开发-ArkTS语言基础类库多线程I/O密集型任务开发

    使用异步并发可以解决单次I/O任务阻塞的问题,但是如果遇到I/O密集型任务,同样会阻塞线程中其它任务的执行,这时需要使用多线程并发能力来进行解决。 I/O密集型任务的性能重点通常不在于CPU的处理
    发表于 03-21 14:57

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将
    的头像 发表于 03-14 08:38 1131次阅读

    语音数据集在自动驾驶中的应用与挑战

    随着人工智能技术的快速发展,自动驾驶汽车已经成为交通领域的研究热点。语音数据集在自动驾驶中发挥着重要的作用,为驾驶员和乘客提供了更加便捷和安
    的头像 发表于 12-25 09:48 555次阅读