0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

分享利用零漂移放大器实现高精度系统设计的方法

贸泽电子 来源:djl 作者:贸泽电子 2019-08-16 14:31 次阅读

顾名思义,零漂移放大器是指失调电压漂移接近于 0 的放大器。它连续自动校正任何直流误差,实现超低水平的失调电压、时间漂移和温度漂移。

零漂移放大器的常见特性包括:超低失调电压和漂移、高开环增益、高电源抑制、高共模抑制以及零 1/f 噪声。

Q:

零漂移放大器有哪些常见应用?

A:

零漂移放大器常用于使用低幅度信号、频率低于100Hz、要求高闭环增益的精密应用。此类应用包括:精密电子秤、称重传感器、桥式/热电偶传感器前端、医疗仪器和精密计量设备。

Q:

为什么零漂移放大器常用于低频传感器信号调理系统?

A:

传感器产生的输出电压通常很低,需要通过具有高增益、低噪声和精密直流性能的信号调理电路进行调理。然而,失调电压、漂移和1/f噪声会引起误差,尤其会影响直流或低频、低电平电压测量。这些直流不精确性被电路增益级放大后,会导致输出电压偏移。因此,必须最大程度地降低失调电压和漂移,消除1/f噪声,利用零漂移放大器可以实现最佳的信号调理。

Q:

零漂移设计技术有哪些?

A:

零漂移放大器可以采用不同的技术来设计:自稳零、斩波或二者之组合。每种技术都有其优缺点,适合不同的应用。自稳零使用采样保持技术,由于噪声折回基带,其带内电压噪声较大。斩波使用信号调制和解调技术,基带噪声较低,但在斩波频率及其谐波处会产生噪声能量谱。为了降低低频噪声和斩波频率处的噪声能量,可以综合使用这两种技术。

Q:

哪种设计技术更适合我的应用?

A:

这取决于您的具体应用。斩波放大器更适合直流或低频应用,自稳零放大器则更适合宽带宽应用。综合运用自稳零和斩波技术的零漂移放大器适用于宽带宽和低噪声应用。然而,最新推出的零漂移放大器ADA4528-1采用创新斩波技术,实现了更高的斩波频率(200KHz)、 更低的失调电压、漂移和噪声。这些特性使它能够用在传统斩波放大器无法 使用的宽带宽应用。

Q:

ADI 零漂移放大器设计技术是什么?

A:

零漂移放大器设计技术已经取得了多项突破。ADI 为一种新型斩波技术申请了专利,它利用一个称为自动校正反馈(ACFB)的本地反馈环路来消除失调电压。该反馈环路有助于实现更低的失调电压和漂移,从而防止在整个输出中出现电压纹波。其简化框图如图1所示。

分享利用零漂移放大器实现高精度系统设计的方法

图1:放大器功能框图

它由一条带自动校正反馈 (ACFB) 功能的高直流增益路径和一条高频前馈路径并联而成。输入基带信号最初由输入斩波开关网络 CHOP1 调制。然后,输出斩波开关网络 CHOP2 解调输入信号,并将跨导放大器Gm1 的初始失调和 1/f 噪声调制到斩波频率。在 ACFB 环路中,初始失调和1/f噪声由斩波网络 CHOP3 解调到直流域,经过陷波滤波器滤波后馈入Gm1的调零输入端。Gm1 进而消除初始失调和 1/f 噪声。这样,ACFB 环路有选择性地抑制不需要的失调电压和 1/f 噪声,同时又不会干扰所需的输入基带信号。高频前馈路径的作用是放大接近或高于斩波频率的任何高频输入信号,它还能旁路 ACFB 环路造成的相移。

Q:

零漂移放大器的电压噪声密度特性与非零漂移放大器有何不同?

A:

1/f 噪声又称闪烁噪声,是半导体器件的固有特性,随着频率降低而提高。因此,它是直流或低频时的主要噪声。放大器的 1/f 转折频率是指闪烁噪声与宽带噪声相等时的频率。

图2显示了一个非零漂移放大器的电压噪声密度示例,其 1/f 转折频率为800Hz。对于直流或低频应用,1/f 噪声是主要的噪声源,如果被电路噪声增益放大,它会产生显著的输出电压噪声。另一方面,零漂移放大器对该电压噪声进行整形,以便消除 1/f 噪声。由于 1/f 噪声表现为缓慢变化的失调量,因此能被斩波技术有效消除。当噪声频率接近DC时,校正变得更加有效,噪声随着频率降低而指数式提高的倾向得以消除。因此,比起标准型低噪声放大器,零漂移放大器的 0.1Hz 至 10Hz 电压噪声通常低的多,因为标准型低噪声放大器的 0.1Hz 至 10Hz 电压噪声易受 1/f 噪声的影响。

分享利用零漂移放大器实现高精度系统设计的方法

图2:非零漂移放大器——电压噪声密度与频率的关系

图3显示了一个无 1/f 电压噪声的零漂移放大器的电压噪声密度。

分享利用零漂移放大器实现高精度系统设计的方法

图3:零漂移放大器:电压噪声密度与频率的关系

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2548

    文章

    50660

    浏览量

    751831
  • 放大器
    +关注

    关注

    143

    文章

    13545

    浏览量

    213086
  • 电压
    +关注

    关注

    45

    文章

    5556

    浏览量

    115575
收藏 人收藏

    评论

    相关推荐

    漂移反相放大器电路

    漂移反相放大器电路 漂移反相放大器
    发表于 12-07 10:50 1410次阅读

    漂移放大器特性概述

    的早期特别有用,其中高增益配置和连接微伏信号的接口很常见。受益于此技术的常见应用还包括精密应变计和体重秤、电流分流测量、热电偶、热电堆和桥式传感器接口。轨到轨漂移放大器 系统性能可通
    发表于 08-20 04:45

    漂移放大器:现可轻松用于高精度电路中

    、高电源抑制以及更低的1/f噪声而设计,是在高要求系统应用中(比如检测应用)实现高分辨率的理想选择,具有较长的产品生命周期。漂移放大器的基
    发表于 10-11 08:00

    漂移放大器:现可轻松用于高精度电路中

    、高电源抑制以及更低的1/f噪声而设计,是在高要求系统应用中(比如检测应用)实现高分辨率的理想选择,具有较长的产品生命周期。漂移放大器的基
    发表于 10-15 08:00

    可用于高精度电路的漂移放大器

    漂移放大器的基本架构不同漂移放大器之间的噪声对比ADA4522-2用作
    发表于 04-06 06:41

    如何使用漂移精密仪表放大器实现高精度的应用设计

    本文介绍如何使用一个漂移精密仪表放大器、一对rejustor和增益设置电阻实现高精度的应用设计。
    发表于 04-25 06:38

    漂移放大器的选择

    顾名思义,漂移放大器是指失调电压漂移接近于 0 的放大器。它连续自动校正任何直流误差,实现超低
    发表于 09-22 09:27

    漂移放大器基础知识

    漂移放大器是指失调电压漂移接近于0的放大器。它连续自动校正任何直流误差,实现超低水平的失调电压
    发表于 10-08 11:13 2586次阅读
    <b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>放大器</b>基础知识

    漂移放大器

    漂移放大器
    发表于 03-05 15:00 5次下载

    漂移放大器:现在易于在高精度电路中使用

    漂移放大器,顾名思义,是一种失调电压漂移非常接近于放大器。它使用自动归
    的头像 发表于 01-08 16:34 1522次阅读
    <b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>放大器</b>:现在易于在<b class='flag-5'>高精度</b>电路中使用

    漂移放大器的缺点和优点有哪些?

    篇文章中,我们将介绍漂移放大器的优点和缺点。 优点: 1. 高精度漂移
    的头像 发表于 09-19 16:03 587次阅读

    使用漂移放大器的注意事项

    或者长时间使用的情况下,漂移放大器可以始终保持精确的输出。在各种应用中,漂移放大器都具有重要
    的头像 发表于 09-19 17:33 487次阅读

    漂移放大器的测试详解

    介绍漂移放大器的原理及测试方法。 一、什么是漂移放大器
    的头像 发表于 09-19 17:33 874次阅读

    漂移放大器:现可轻松用于高精度电路中

    电子发烧友网站提供《漂移放大器:现可轻松用于高精度电路中.pdf》资料免费下载
    发表于 11-24 11:13 2次下载
    <b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>放大器</b>:现可轻松用于<b class='flag-5'>高精度</b>电路中

    什么是漂移放大器?它有哪些特性?

    漂移放大器是一种特殊类型的放大器,其显著特点是失调电压漂移接近于。这种
    的头像 发表于 08-08 11:34 452次阅读