该电路为带有频率同步的高压、高效、开关模式电池充电器,适用于对谐波辐射较敏感的电池供电应用。
带有高灵敏度模拟前端(AFE)的电池供电设备一般必须能够在电池充电期间正常工作,例如移动式软件无线电、便携式超声成像系统以及可穿戴病人监护设备。根据应用的不同,AFE电路的工作频率范围可能从200kHz到高达几百MHz不等。高灵敏度AFE电路可能是移动无线电或超声成像设备中相控阵收发器的中间频率级。在使用开关模式充电器对电池进行充电时,充电器开关频率会产生有害的谐波辐射,降低AFE灵敏度。
频率同步的作用
频率同步可用于控制开关谐波的分布,以及最大程度减小开关拍频,否则会降低系统灵敏度。该技术通常用于负载点DC-DC稳压的开关模式电源(SMPS)中,电源稳压器与外部时钟源同步。SMPS被广泛使用的原因是其具有高效率,但也带来独特的辐射挑战。频率同步解决了SMSP负载点应用中的这一问题,也可以延伸到开关模式充电器。
然而,频率同步、高效、开关模式电池充电器的设计选择是有限的。所以,工程师往往使用线性充电器,其噪声较低,但效率较差、散发出较大的热量。工程师也可以使用比较理想的开关模式充电器方案:效率较高但不支持同步或不能工作在较宽输入电压范围。
电池充电
本文给出的电路阐述了电池充电中的这种要求。该电路为高压、高效、恒流/恒压、带有频率同步的开关模式锂离子(Li+)电池充电器。我们在24V的电压下对电路性能进行了测试,但是电路可以工作在从7V到44V的范围内(44V是我的实验室电压极限)。开关频率设定为500kHz。MAX17504降压型DC-DC转换器支持200kHz至2.2MHz频率同步。对于其它频率,电感可能需要调节。
锂(Li+)电池的充电需要两个步骤(图1)。
图1. 恒流/恒压Li+充电曲线。
对于已放电电池,第一步要求充电器处于恒流模式。根据电池制造商的数据资料,可获得最大充电速率。快充或者说1C速率下,充电电流等于电池的安时额定值。随着电池充电,电池电压达到规定的设置点电压,一般为4.2V;此时,电池容量仅达到其最大值的65%至70%。
2. 在充电过程的第二阶段,将充电器置于恒压模式。恒压模式下,充电器提供足够电流,将电池电压恒定维持在设置点电压。因此,充电电路将持续减小充电电流,造成充电电流曲线逐渐降低,如图1所示。
该电路的核心是DC/DC开关转换器U1 (图2)。MAX17504的输入电压工作范围较宽,从4.5V至60V,可同步的外部时钟频率从200kHz至2.2MHz。该设计思想经过测试,对单节4.2V、2.2AHLi+电池进行充电,输入电压为24V。
图2. 该电池充电器提供恒流/恒压模式,带频率同步输入。
当电池负载电流小于预设的充电电流值VICHG时,将积分器U3的输出驱动为+Vf,从而将Q1偏置关断,充电器处于恒压模式。因此,通过R4的电流接近于0,充电电压由下式给出:(R2/R1 + 1) × 0.9V。恒流模式下,U2和U3构成电流控制环路,充电电流由U3的引脚3上的电压的设定。U2为电流检测放大器,测量RS上的电流,为U3构成的积分器提供误差电压。当U2输出电压要超过VICHG时,积分器输出将降低其电压,开始偏置Q1,向反馈节点源出电流。该动作降低了转换器的输出电压,从而降低源出至电池的电流。
该反馈环路通过积分器的伺服操作找到电池的放电状态检测限流工作点。测得该电路在24V下的电流精度(25°C)优于1.6%。通过向VICHG施加0.450V电压,将输出电流设定为1.5A。VICHG可来自于不同的电源,例如固定电压基准、MCU的PWM滤波输出或DAC输出。一个稳定的电压源对于VICHG来说,非常重要。
该充电器能够将开关频率与外部时钟同步,非常独特,并且输入电压工作范围较宽。电路处于恒流模式时,电池充电电流由式1设定。
I charge = (VICHG/CSA gain)/RSENSE (式1)
其中,MAX4173的CSA增益为20,电路中的RSENSE为0.015Ω。
-
电流
+关注
关注
40文章
6741浏览量
131831 -
转换器
+关注
关注
27文章
8624浏览量
146839 -
充电器
+关注
关注
100文章
4071浏览量
114619 -
高压
+关注
关注
6文章
631浏览量
30167
发布评论请先 登录
相关推荐
评论