0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

加速人工智能技术落地 揭秘Arm中国的AI布局路线图

pmkA_arm_china 来源:yxw 2019-07-02 10:44 次阅读

近日,由电子发烧友主办的“2019年人工智能技术峰会”在深圳成功举行。本次峰会以“加速人工智能技术落地”为主题,汇聚了人工智能产业链上下游领先企业,超过一千名专业观众,近30位企业高管、行业专家纵论产业发展之道,从不同领域、不同产业环节出发,对2019年人工智能在中国市场的进一步落地,进行了探讨及预测。

rm中国市场部负责人梁泉与Arm中国AI产品经理杨磊也参与演讲,为现场的观众带去了Arm中国对于人工智能技术市场的预测以及Arm中国周易人工智能平台的最新进展。

连接无处不在,如何把AI“放”进每个终端?

回顾计算发展的历史,梁泉表示经历了主机计算时代、个人计算和软件、互联网、移动和云计算这四次浪潮,第五次浪潮将是一个由数据驱动的全面计算时代,Arm生态系统在这波浪潮中将迎来巨大的机遇,推动经济增长及社会进步。但是,只有把当前的先进技术转化为坚实的业务,第五次浪潮才会成为现实。

Arm中国市场部负责人梁泉

根据Arm此前的预测,到2035年,全球将有一万亿设备实现互联。飞速发展的物联网已成为人类文明史中推进速度最快的新兴经济体系,全球累计物联网设备产生的新产值已达到30万亿美元,而在接下来的20年内,预计累计中国物联网相关设备及产值就将达到60万亿元以上。

此外,机器学习算法深度学习芯片组在取得不断突破的同时,AI也持续向不同垂直行业领域、边缘终端纵横渗透,赋能边缘设备发展,应用于每个IoT终端节点,从软/硬两方面实现降本增效及体验升级。整个AI产业生态正在构建,新的秩序正在形成。“目前,90%的AI智能设备都基于Arm IP,Arm IP极大驱动了人工智能和机器学习技术的发展。Arm希望与合作伙伴共建面向未来的智能生态,实现这些优势。”梁泉强调道。

在此大趋势下,如何满足嵌入式平台日益增长的人工智能智能处理需求?梁泉指出,分布式计算成为未来方向,边缘处理在带宽、电源、成本、延迟、可靠性和安全性方面提供了好处。因为并非所有数据都需要发给数据中心去处理,在数据被搜集和使用的节点也应该具有这一能力。这意味着不仅要在笔记本电脑处理器中启用这种边缘处理能力,还要在性能、功耗和内存方面有限的小型嵌入式设备上实现这种计算水平。

此外,梁泉还提到,去年Arm中国推出的本土工程团队第一个成果——周易人工智能平台,采用完全自主开发的AI处理器和软件框架,让芯片厂商能够在现有的技术能力上,快速部署人工智能计算的算力,在同等的成本功耗情况下,能做到人工智能应用所需要的算力。它的核心包含两部分,一是Tengine软件框架,二是AIPU(人工智能处理单元),主要处理卷积神经网络、深度神经网络为代表的AI计算。从优化端侧芯片开发的角度看,周易平台降低了两个门槛:一方面是SoC集成AI功能的设计门槛,另一方面是上层软件的开发门槛。

梁泉表示:“未来的智能生态,所有基础革命都必须通过开放生态系统把成本功耗降下来,又能通过共同的标准和体系让大家协作,在同一个开发环境中,把应用服务做好。”

周易AIPU赋能边缘AI设备

众所周知,过去几年AI从一个被轻视的学术冷门研究突然爆红,一路狂奔到商业化的最前沿,在安防、金融、教育、制造、家居、娱乐等各个与人们生活息息相关的领域掀起了一股智能化升级和万物互联的飓风。

Arm中国AI产品经理杨磊

而在Arm中国AI产品经理杨磊看来,AI芯片的基础技术格局可分为云端和边缘端,目前AI训练基本上都是在云端进行的,需要用到的芯片主要是CPUGPU和TPU等计算能力相对更强的芯片;但AI推理就不同了,有在云端进行的,也有在设备端进行的,而且现在越来越多的推理被放到了边缘侧实现。这就导致了目前人工智能应用面临以下三大挑战:

一、数据隐私性。目前人工智能应用最多的领域是视频和图片,以及自然语音处理,这些数据的处理基本都是在云端进行的,但这些数据传到云端后会有一个隐私问题,有些数据人们其实是不想传送到云端的。

二、算力问题。由于AI需要做的事情很多,比如物体检测、人体检测和识别、跟踪,以及行为分析等等,加上现在的摄像头分辨率越来越高,从720p 到 1080p ,再到4K,使得AI对算力的要求越来越高。这就要求芯片具有更高的性能,从几百GOPS到几TOPS。

三、功耗问题。因为边缘侧功耗限制,设备一般只有几瓦,留给AI运算的部分只有几百mW到2W,这就需要新技术来应对这个难题。

为了应对这三大挑战,Arm中国周易人工智能平台,使用的AI处理器Zhouyi AIPU,采用了全新的为AI设计的专用指令集,具有高性能和高灵活性,单核有0.5、1、2、4TOPS可选,还支持多核;是一个具有硬件IP、软件SDK和NBB的全栈解决方案;更重要的是,它支持安全扩展。

具有周易AIPU的参考芯片框架图

全新的专用指令集是如何实现高性能和高灵活性的呢?杨磊解释说,这是因为Arm采用了不同颗粒度的指令集,客户可以根据自己的需求用类似搭积木的方式来设计自己的AI处理器。“指令集根据运算能力从小到大,可分为标量指令、向量指令和面向AI硬件加速的AI固定指令。”此外,为了满足定制化和差异化需求,周易人工智能平台还支持用户根据特定场景,自定义扩展AI Fix Function指令。现场Arm中国的展示台上,秀出的16通道人脸识别监控系统Demo,正是由于周易平台Framework作加速,支持的通道数很多,处理速度也得到了进一步的加快。

杨磊还特别指出,在人工智能开发过程中工具链也是相当重要的,Arm可以提供完整的工具链供工程师使用。其“一键式”周易软件工具链,包括比如Build Tool/Driver、性能优化库、软件仿真器,以及AI算法示例等,可以实现一键从算法模型到周易可执行文件生成。

边缘计算已经成为未来趋势。在物联网应用中,让智能思考留在本地,其不仅可以降低功耗、降低时延、节约带宽,而且能够提高设备的独立性、安全性和私密性。“要通过边缘计算实现物联网设备的本地计算,需要具备以下几方面先决条件:具备优化的DSP,充分保证功能性安全,以及安全的平台架构、异构系统架构、机器学习能力、可扩展处理能力,而Arm也在提供周易人工智能平台这样的全栈式解决方案积极促进边缘智能计算的应用落地。”杨磊强调道。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    134

    文章

    9107

    浏览量

    367977
  • 互联网
    +关注

    关注

    54

    文章

    11166

    浏览量

    103460
  • 计算机
    +关注

    关注

    19

    文章

    7518

    浏览量

    88193
  • 人工智能
    +关注

    关注

    1792

    文章

    47410

    浏览量

    238925

原文标题:加速人工智能技术落地,揭秘Arm中国的AI布局路线图

文章出处:【微信号:arm_china,微信公众号:Arm芯闻】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于RISC-V学习路线图推荐

    一个号的RISC-V学习路线图可以帮助学习者系统地掌握RISC-V架构的相关知识。比如以下是一个较好的RISC-V学习路线图: 一、基础知识准备 计算机体系结构基础 : 了解计算机的基本组成、指令集
    发表于 11-30 15:21

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    不仅提高了能源的生产效率和管理水平,还为未来的可持续发展提供了有力保障。随着技术的不断进步和应用场景的不断拓展,人工智能将在能源科学领域发挥更加重要的作用。 总结 《AI for Science:
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    RISC-V在中国的发展机遇有哪些场景?

    联网市场的重要参与者,拥有庞大的用户基数和丰富的应用场景。RISC-V在中国的发展将受益于这一市场需求的增长。 2. 人工智能AIAI算力需求:随着
    发表于 07-29 17:14

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术
    发表于 07-29 17:05

    2024学习生成式AI的最佳路线图

    本文深入探讨了2024年最佳生成式AI路线图的细节,引领我们穿越动态进展、新兴趋势以及定义这一尖端领域的变革应用。引言在日新月异的人工智能领域,生成式AI犹如创新的灯塔,不断拓展创造力
    的头像 发表于 07-26 08:28 591次阅读
    2024学习生成式<b class='flag-5'>AI</b>的最佳<b class='flag-5'>路线图</b>

    纳微半导体发布最新AI数据中心电源技术路线图

    纳微半导体,作为功率半导体领域的佼佼者,以及氮化镓和碳化硅功率芯片的行业领头羊,近日公布了其针对AI人工智能数据中心的最新电源技术路线图。此举旨在满足未来12至18个月内,
    的头像 发表于 03-16 09:39 978次阅读

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢
    发表于 02-26 10:17

    Arm 更新 Neoverse 产品路线图,实现基于 Arm 平台的人工智能基础设施

    Neoverse CSS 产品;与 CSS N2 相比,其单芯片性能可提高 50% Arm Neoverse CSS N3 拓展了 Arm 领先的 N 系列 CSS 产品路线图;与 CSS N2 相比
    发表于 02-22 11:41 395次阅读

    人工智能技术的优势有哪些

    人工智能技术的优势
    的头像 发表于 01-19 15:58 3166次阅读