0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习的未来是小而美

Hf1h_BigDataDig 来源:YXQ 2019-07-06 11:23 次阅读

Pete Wardan任谷歌TensorFlow移动和嵌入式团队的leader,在O'Reilly AI Conference 2019的Keynote演讲环节,他对机器学习的未来进行了深度剖析。他认为机器学习的未来就是以小为美。未来,微处理器将如何与机器学习共同合作?能否在技术上取得突破?这些问题值得深思。

想象一下这样一个世界:数千亿台设备不仅收集数据,而且会将数据转化为可操作的意见,而这些意见可以改善数十亿人的生活。

而要做到这一点,我们需要机器学习。但是一般来说,机器学习会消耗大量的系统资源。因此,低功耗,低成本的机器学习是目前需要探索并寻求突破的。

与此同时,深度神经网络也越来越多地被应用于改进很多东西,从广告系统到自动驾驶汽车原型,因此,它们也注定要改造微型计算机(即微控制器)。

因此,Pete在演讲中指出,微型处理器、内嵌处理器是机器学习的未来。

微处理器已无处不在

Pete首先用Alexa做了一个小演示,展示了基于网络的机器学习模型如何在小型的、内嵌式的处理器上去运行的,以及它可以持续几周的时间。

之所以选择用Alexa演示,是因为这台设备没有联网,也没有Wi-Fi蓝牙,它只是在20KB的模型上运行,这个微型处理器也只有几百KB的内存。而这个模型仅仅靠钮扣电池供电,就能独立运行数周的时间。

这一点非常重要。因为全世界有2500亿个微处理器,每年出货量达到了 400亿,每年都有20%的增幅,平均成本不到50美分。这样的产品已经非常便宜而且无处不在。

此外,CPU如今也已经很便宜了,几乎都是免费的。但是我们把处理器安装到设备上之后,却要专门接电线为其供电,比如在机场,这个供电系统可能就要花几千美金。

除了布线问题,还在于,某些场合,比如手术室、工厂车间,可能并没有合适的地方去增加电源插座等设备。所以说,这非常不合理。能源供应问题成了很多设备的限制因素。

手机需频繁充电的首要原因——高能耗

以我们现在每天都离不开的手机为例。虽然手机不需要连接外部的电源,但它每天都需要充电。如果你有几十个甚至几百个电子设备需要进行打理的话,那可能你所有的时间都花在充电上了。所以很多设备,我们只好采取即插即用的办法来供电。

智能手机的能耗情况如何,为什么总要频繁充电?请参考以下数据:

显示器大约使用400毫瓦

有源蜂窝无线电大约使用800毫瓦

蓝牙大约使用100毫瓦

加速度计使用21毫瓦

陀螺仪消耗130毫瓦

GPS消耗176毫瓦

如果我们把手机的能耗降到1毫瓦以下,那么仅仅一枚钮扣电池就能支持手机运行一个月。我们需要在这样的能耗限制下进行设计,才能保证无所不在的微处理计算和人工智能技术相得益彰。

传感器数据被浪费的原因——传输能耗太大

现有的CPU做计算本身是基本没有功耗的,它可以把功耗降到几百微瓦的水平,传感器也是如此。比如,麦克风的功耗也非常低,还有图形传感器。麦克风可能是几百微瓦的水平,传感器也是可以降到1毫瓦的水平。

因此,微处理器和传感器可以把功耗降到非常低的程度。低功耗的解决方案大大提升了传感器收集数据的能力,它们能够更频繁地查看需要的信息

然而,虽然传感器能够以很低的功耗获得巨量的数据,但是这些却没有得到充分的应用。

比如,几年前,一家卫星公司,能够拍摄很多高清晰度的图片。但是因为带宽的问题,每个小时只能下载几百MB的数据,所以卫星和地面的通讯成本太高了,最终我们能得到的图片只是很少的一部分。

此外,比如在工厂里面的温度计,它们可以获取很多的数据。但是工厂并没有那么多的电力把这些数据上传到云端,所以很多数据也都被浪费了。

深度学习与微处理器的完美配合

对于现有的这些问题,技术应该发挥什么样的作用?如何能够把大量的传感器的数据利用起来,把它的价值发挥出来?能否降低设备能耗?

Pete认为还有很大的市场等待科技去解锁

机器学习在这方面就可以发挥非常重要的作用,具体来说,是深度学习。因为深度学习才能够最有效地把这些混沌的、非结构性质的数据利用起来。

深度学习可以处理大量未标记的数据

很少有人意识到深度学习和微处理器(MCU)的匹配程度。深度学习实际上是基于计算,而不是依靠通讯或者数据读取来运行的。因此,我们不需要很大的内存,也不需要大量访问内存。这恰好也符合微处理器的设计,它只有几百KB的内存,同时每秒可以运行几千万甚至上亿次的指令。

所以我们可以用很低的功耗来满足它的学习或者训练目的。如果我们知道对于一个给定的神经网络系统,它需要5皮焦(pJ)的能耗来执行一个操作,如果用最小的图象识别,它需要2200万的浮点计算,那么它将共需要5皮焦*22,000,000=110微焦(µJ)的能量来执行这个操作。如果每秒分析一帧,那只需要110微瓦,如此,用钮扣电池就能供一年的电量,而且不需要对现有的硬件改进。

谷歌的团队曾在2014年开发了一个13KB的模型来进行语音识别,而苹果也在做类似的研发工作。所以这些语音识别团队,就可以在非联网的微型处理器上来进行机器学习和训练。

TensorFlow Lite——赋予移动终端机器学习的能力

2017年,谷歌在Google I/O大会推出TensorFlow Lite,是专门针对移动设备上可运行的深度网络模型简单版。但当时只是开发者预览版,未推出正式版。

2019年3月,TensorFlow Lite嵌入式平台发布了第一个实验原型。这是由SparkFun构建的开发板的原型,它有一个Cortex M4处理器,具有384KB的RAM和1MB的闪存存储。该处理器功率极低,在许多情况下功耗不到1毫瓦,因此它可以仅凭小型纽扣电池运行很多天。

Pete在安卓开发峰会上介绍TensorFlow Lite

它完全在本地嵌入式芯片上运行,无需任何互联网连接,因此最好将其作为语音接口系统的一部分。该模型本身占用的存储空间不到20KB,TensorFlow Lite代码的占用空间仅为25KB的Flash,而且只需要 30KB的RAM即可运行。

TensorFlow Lite 的目标便是移动和嵌入式设备,它赋予了这些设备在终端本地运行机器学习模型的能力,从而不再需要向云端服务器发送数据。这样一来,不但节省了网络流量、减少了时间开销,而且还充分帮助用户保护自己的隐私和敏感信息。

TensorFlow Lite被用来解决了移动设备的图像分类、物体检测智能聊天的问题。

深度学习未来的应用

深度学习最关键的在于,它特别适合把传感器的数据转化为非常有价值的资产。

全语音界面

深度学习的一个「杀手」应用,也许在不久的将来就会实现,那便是:全语音的界面。这样的界面用50美分的芯片就可以实现,同时,用一个钮扣电池就可以维持一年的运行。如此一来,我们可以只用语音操控,而不再需要开关或者是按纽了。所有的机器、设备都可以使用语音通讯的界面。

这种便宜的芯片还可以用于农业的用途,比如通过图形识别可以用很低的成本来识别有害杂草,农业工作者便可以精准地施用农药。

预维护模式

另外,还有预测式维护。我们可以预先知道哪些机器可以出故障。比如针对汽车故障,人不可能到汽车里面去看发动机哪出了什么问题,或者听出马达的声音出现了问题,但是我们可以对模型进行训练,把这些设备直接插到系统里面,不需要做新的布线或联网,这个设备就可以直接告诉你:系统好像出问题了,设备需要及时维护、维修。当然,这个模型并不需要持续上网发出设备信息,只是当要发生重大事故或者隐患的时候才会发出通讯。

深度学习未来的应用

未来的世界有更多的可能性,现在人工智能对于我们,就像八十年代的电脑一样。我们不知道它会发展成什么样子,但是我们可以想象一下我们目前面对的各种问题和挑战,在工作中面临的困难。如何用小小的芯片进行机器学习?这方面我们可以有新的角度去探索,也有新的研究成果去发挥作用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6141

    浏览量

    105087
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132406

原文标题:TensorFlow技术主管Peter Wardan:机器学习的未来是小而美

文章出处:【微信号:BigDataDigest,微信公众号:大数据文摘】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 221次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 305次阅读

    2024 SIGN ISTANBUL展会回顾

    近日,第25届国际广告及数码打印技术展览会 (以下简称:SIGN ISTANBUL) 在土耳其伊斯坦布尔隆重举行。本次展会,科携多款热销产品精彩亮相,向全球客户展示科美在广告显示应用领域的不俗实力,并且收获了众多参展嘉宾的
    的头像 发表于 11-06 11:18 212次阅读

    嵌入式系统的未来趋势有哪些?

    嵌入式系统是指将我们的操作系统和功能软件集成于计算机硬件系统之中,形成一个专用的计算机系统。那么嵌入式系统的未来趋势有哪些呢? 1. 人工智能与机器学习的整合 随着现代人工智能(AI)和机器
    发表于 09-12 15:42

    人工神经网络与传统机器学习模型的区别

    人工神经网络(ANN)与传统机器学习模型之间的不同,包括其原理、数据处理能力、学习方法、适用场景及未来发展趋势等方面,以期为读者提供一个全面的视角。
    的头像 发表于 07-04 14:08 1041次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 760次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的数据分析能力。本文将深入探讨机器
    的头像 发表于 07-02 11:22 544次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1186次阅读

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来

    设备的运行状况,生成各种维度的报告。 同时,通过大数据分析和机器学习技术,可以对业务进行预测和预警,从而协助社会和企业进行科学决策、降低成本并创造新的价值。 当今时代,数据无处不在,时间序列数据更是
    发表于 06-25 15:00

    富唯智能:打造未来机器人教育新标杆

    随着科技的飞速发展,机器人教育正逐渐成为培养未来人才的重要领域。富唯智能,作为业内领先的机器人技术提供商,近日推出了一款全新的机器人教育实践平台系统,旨在为学生提供更加丰富、更具挑战性
    的头像 发表于 04-23 16:45 352次阅读

    傅里叶变换基本原理及在机器学习应用

    连续傅里叶变换(CFT)和离散傅里叶变换(DFT)是两个常见的变体。CFT用于连续信号,DFT应用于离散信号,使其与数字数据和机器学习任务更加相关。
    发表于 03-20 11:15 857次阅读
    傅里叶变换基本原理及在<b class='flag-5'>机器</b><b class='flag-5'>学习</b>应用

    【量子计算机重构未来 | 阅读体验】+机器学习的终点是量子计算?

    便对机器的计算能力产生了兴趣,虽然不是这个专业的,但是可以抽出闲鱼的时间,来了解一下,可以通过学习来掌握一些技能。 目前也只有在闲暇之余做一些代码的工作了。 希望以后能够用的上。 其次大学期间也没有学
    发表于 03-10 16:33

    人工智能和机器学习的顶级开发板有哪些?

    设备不必再依赖远程服务器或云来洞察传感器数据或用户输入。像TinyML这样的软件框架正在发展成为微控制器专用的机器学习解决方案,传统的深度学习框架也可以在功能强
    的头像 发表于 02-29 18:59 764次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板有哪些?

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
    的头像 发表于 01-08 09:25 914次阅读
    如何使用TensorFlow构建<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型

    焊缝跟踪未来:人工智能与机器学习的影响

    随着科技的不断进步,焊接行业也在迎来一场革命性的变革。焊缝跟踪技术,作为焊接领域的关键创新之一,正在经历着人工智能和机器学习的引领下迎来更加智能、高效的发展。本文将深入探讨焊缝跟踪技术未来的走向
    的头像 发表于 12-12 11:51 451次阅读