0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能提前五年预测乳腺癌,让疾病无所遁形!

Hf1h_BigDataDig 来源:YXQ 2019-07-09 10:28 次阅读

对乳腺癌的早期筛查一直是机器学习的一个热门研究方向,可是已有的筛查模型大多数依赖于白人女性样本,因此对于非白人女性的筛查准确率令人堪忧。

最近麻省理工开发的新模型不仅很好地解决了这个问题,而且还能够提前五年筛查出乳腺癌病患!

这一项突破性研究,标志着深度学习技术推动下的医学进步,可以提前了解病情,做针对性治疗,这对于病患来说,是一大福祉。

Regina Barzilay和Lehman与CSAIL博士生的主要作者Adam Yala共同撰写了这篇论文。

已有的筛查模型

之前的疾病筛查模型大多是CNN(卷积神经网络)的改良版本,CNN是前馈神经网络模拟人的视觉对于图像的理解。网络结构中的卷积核提取图像的边缘、轮廓等信息,Relu等激活函数模拟大脑对于外界信号刺激的应答,对提取到的图像信息做整合,浅层卷积层提取到局部的图像信息,层数越深的卷积层能提取到全局的图像信息,在CV(Computer Version)领域也称为感受野(Receptive Field),CNN网络模型对于图像的分类任务处理十分友好,下图很好地展示了CNN网络的结构和原理:

CNN图像理解示意图

疾病筛查任务也就是二分类任务,对于输入的图像,需要得到是否患病的判断。给医学图片做标签(在计算机科学中标记为0或1,0表示没有患病,1表示患病),在模型中,通过Label(标记)好图片的训练和反向传播的参数调整,使得模型具备一定的学习能力,最终能够对未标记的医学图片做疾病筛查。但是训练的结果依靠数据集的好坏,已有的很多乳腺癌预测数据集都偏向于白人女性的研究,鲜少考虑到其他族裔。麻神理工大学研究人员开发的诊断模型考虑到了这一点。

将研究扩展到少数族裔

麻省理工的研究人员在一篇博客中指出,事实上这个看起来不起眼的一个细节是乳腺癌预测的关键:因为黑人女性死于乳腺癌的概率比白人女性高 42%。而正是目前的乳腺癌早期诊断技术中对黑人女性的诊断模型缺失造成了这一巨大差异,因为包括黑人女性在内的少数族裔样本在已有的深度学习模型开发中通常鲜有被考虑进去。

而麻省理工的研究人员表示,他们对乳腺癌预测模型的研究正是为了弥补这一缺陷,他们希望通过这一研究提高对少数族裔健康评估的准确性。针对同一个问题的研究同时也是近期很多业界公司研究和产品开发的重心。

模型结果表明,对于黑人和白人女性的预测效果都相当好。

之所以强调对黑人与白人女性的效果一样好,是因为研究人员在开发过程中发现同类的人工智能模型存在大量偏差——因为它们对样本的采集严重地倾向白人女性,黑人女性则很少。因此来自麻省理工的研究团队仔细地设计了他们的模型,使得它对于两种族裔的女性都能够很好地作出预测。

基于风险评估的提前预测

麻省理工学院教授Regina Barzilay本人是一名乳腺癌幸存者,她表示希望这样的系统能让医生在个人层面定制筛查和预防计划,使得晚期诊断成为历史。

所有性别都有患乳腺癌的风险,而大部分人通常认为只影响女性。自1989年第一个乳腺癌风险模型以来,研究者发展患乳腺癌的风险在很大程度上取决于人类的知识和对主要危险因素的直觉,如年龄、乳腺癌和卵巢癌的家族史、激素和生殖因素以及乳房密度。

然而,这些标志物中的大多数仅与乳腺癌微弱相关。因此,这些模型在个人层面上仍然不是很准确,并且鉴于这些限制,许多组织仍然认为基于风险的筛查计划是不可能的。

另一方面,“自20世纪60年代以来,放射科医生已经注意到女性在乳房X线照片上可以看到独特且变化很大的乳房组织模式,”Lehma说。“这些模式可以代表遗传,激素,怀孕,哺乳,饮食,体重减轻和体重增加的影响。我们现在可以在个人层面的风险评估中更准确地利用这些详细信息。”

不同于已有的预测模型,麻省理工计算机与人工智能实验室开发出的模型准确地将31%的癌症患者置于风险最高的类别,而传统模型仅为18%,可以至多提前五年预测乳腺癌细胞发展。

数据集来源

MIT / MGH团队不是手动识别乳房X线照片中驱动未来癌症的模式,而是训练深度学习模型直接从数据中诱导模式。麻省理工开发的这一预测模型的开发基于超过六万名来自麻省总医院(Massachusetts General Hospital)的病人样本,其中包括超过九万份乳房X光检查报告和病人们病情发展情况。

这一模型从这些数据出发,通过深度学习甚至能够辨识出一些人类医生都无法辨认出的病情。因为已有的关于乳腺癌的假设和风险因素都充其量是一个指导性的判断框架,而麻省理工的这个模型并不是基于类似的框架,因此模型的准确性在预测性诊断和预筛查方面会更加准确。

总结与展望

总的来说,麻省理工计算机与人工智能实验室的这一项目旨在协助医生们为病人尽早选择正确的治疗方案,而不是像现在的大多数情况下一样,在病人们的病情恶化甚至发展到晚期时才告诉他们这一残酷的事实。

同时,最近在nature中也有报道,对于BRCA1和BRCA2基因的突变检测也能更有效地开展乳腺癌的治疗。

展望未来,来自麻省理工的团队希望能够用这一技术来提高其他类似疾病的预测准确性,如通过扫描脑部结构,可以对阿尔茨海默病和多发性硬化症做预测,同理也可以对心血管疾病做预测。只要针对某种疾病的研究已经有成型的风险模型,这一技术就有可能大大提高对它预诊断的准确性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 麻省理工
    +关注

    关注

    0

    文章

    39

    浏览量

    12324
  • 人工智能
    +关注

    关注

    1799

    文章

    47975

    浏览量

    241427

原文标题:乳腺癌预测模型只有白人女性数据,MIT刚刚把它扩展到了所有族裔

文章出处:【微信号:BigDataDigest,微信公众号:大数据文摘】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    哨兵模式,违法行为无所遁形

    智能网联时代,汽车安全正经历前所未有的变革。传统的机械锁具和报警器已经无法满足车主对全面防护的需求,而新兴的智能监控系统正逐步走进大众视野。其中,哨兵模式(Sentry Mode)以其主动监控
    的头像 发表于 02-10 09:23 181次阅读

    ZEISS BOSELLO ADR 内部缺陷无所遁形

    伴随着新能源汽车在国内市场的推广和普及,消费者对于续航里程的关注始终是重中之重,而如何解决续航里程焦虑则成为了各个主机厂必须攻克的难题。目前业内最常见的做法有两种:车身轻量化以及增加电池容量。增加电池容量容易理解,但是动力电池已经占据整车成本的30%~50%,增加电池不仅需要占用更多的宝贵车内空间,成本以及整车质量也会随之增加。综合考量,车身轻量化就成了更有实际意义的做法。 车身轻量化并非是简单的将车身质量减
    发表于 12-25 14:15 324次阅读
    ZEISS BOSELLO ADR <b class='flag-5'>让</b>内部缺陷<b class='flag-5'>无所遁形</b>

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程可以追溯到上世纪50代,经
    发表于 11-14 16:39

    友思特应用 FantoVision边缘计算:多模态传感+AI算法=新型非接触式医疗设备

    基于多模态传感技术和先进人工智能技术可有效提升乳腺癌检测的精准性、性价比和效率。友思特 FantoVision 边缘计算机 则为其生物组织数据的高效传输和实时分析提供了坚实基础。
    的头像 发表于 10-30 16:26 269次阅读
    友思特应用  FantoVision边缘计算:多模态传感+AI算法=新型非接触式医疗设备

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能在能源预测
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠问题,将
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    。 5. 展望未来 最后,第一章我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    是一些未来发展趋势: 市场规模持续增长 :据多家研究机构和公司的预测,RISC-V的市场规模将持续增长。到2030,RISC-V处理器有望占据全球市场近四分之一的份额。这将为RISC-V在人工智能
    发表于 09-28 11:00

    夜视如昼,变焦机芯模组黑暗无所遁形

    在追求安全与探索未知的道路上,夜间的清晰视野成为了至关重要的需求。随着科技的进步,变焦机芯模组技术以其卓越的夜视能力和变焦灵活性,黑暗中的一切细节无所遁形,仿佛将夜晚变成了白昼。 夜视技术的革新
    的头像 发表于 09-10 16:02 403次阅读
    夜视如昼,变焦机芯模组<b class='flag-5'>让</b>黑暗<b class='flag-5'>无所遁形</b>

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    活的世界? 编辑推荐 《AI for Science:人工智能驱动科学创新》聚焦于人工智能与材料科学、生命科学、电子科学、能源科学、环境科学大领域的交叉融合,通过深入浅出的语言和诸多实际应用案例,介绍了
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    “本源悟空”真机应用之量子人工智能领域——乳腺钼靶检测应用

    乳腺钼靶检测应用世界卫生组织国际癌症研究机构此前发布的数据显示,乳腺癌现已成为全球发病率最高的恶性肿瘤,严重危害广大女性的身心健康。临床上通常会使用钼靶来筛查和诊断乳腺癌,其结果受到患者自身乳房致密
    的头像 发表于 07-12 08:23 406次阅读
    “本源悟空”真机应用之量子<b class='flag-5'>人工智能</b>领域——<b class='flag-5'>乳腺</b>钼靶检测应用

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    2030 2030 年关于人工智能预测

    本文由半导体产业纵横(ID:ICVIEWS)编译自semiengineering以下是关于2030人工智能世界将会呈现出的个大胆预测。2030
    的头像 发表于 03-28 08:26 884次阅读
    2030 <b class='flag-5'>年</b>2030 年关于<b class='flag-5'>人工智能</b>的<b class='flag-5'>五</b>点<b class='flag-5'>预测</b>

    谷歌携手医疗保健业推出AI驱动肺结核、肺癌及乳腺癌筛查

    其中,通过Gemini工具,有望从磨损的腕带上提取出能为个人健康分析提供数据支持的新功能。另外,谷歌已与印度医疗机构Apollo Radiology International联手开展AI驱动的肺结核、肺癌及乳腺癌筛查业务。
    的头像 发表于 03-20 11:00 836次阅读