0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

你的照片居然可以存储在氨基酸分子溶液里!

DPVg_AI_era 来源:YXQ 2019-07-09 17:08 次阅读

上周,新智元报道了DNA数据存储的新闻,不仅16G的维基百科能够存储到一个DNA分子上,就连存储全球的数据也只需要1kg DNA。

而近期,布朗大学的研究人员受此启发并发现:DNA并不是唯一可以用于数字存储的分子。事实证明,含有糖、氨基酸和其他小分子的溶液也可以取代硬盘。

在DNA的下游,代谢组(metabolome)是一个信息丰富的分子系统,它具有不同的化学维度,可以用来存储和处理信息。

为了证明小分子后基因组( small-molecule postgenomic)数据存储的原理,研究人员利用机器人液体处理将数字信息写入化学混合物,并利用质朴分析提取数据。

研究人员还提出了几个存储在合成代谢体中的千字节(kilobyte-scale)级图像数据集,使用多质量逻辑回归可以对其进行解码,其精度超过99%。

布朗大学工程学院教授、该研究的高级作者Jacob Rosenstein说:

这是一个概念验证,我们希望让人们考虑使用更广泛的分子来存储信息,在某些情况下,我们在这个研究中使用的小分子可以比DNA拥有更大的信息密度。

另一个潜在的优势在于,多种小分子可以相互反应形成新的化合物。这为分子系统创造了潜力,不仅可以存储数据,还可以操纵数据——在代谢物混合物中执行计算。

缩略图大小的图像,存储在比DNA还小的分子上

为了上述的想法,研究人员用常见代谢物做了一种混合物——含有糖、氨基酸和其他小分子的溶液,人类和其他生物利用这些小分子来消化食物和执行其他重要的化学功能。

他们的想法是利用混合物中特定代谢物的存在或不存在作为二进制的1和0来编码数字信息。

图1 该方法将数字数据的1和0映射到溶液中特定分子的存在或不存在。研究人员使用该方案对图像文件进行了编码。

例如,为了生成北山羊的图像,研究小组使用了6种不同代谢物的混合物,这些混合物由液体处理机器人点缀在一个小金属板上。他们总共制作了1024个液滴,每个液滴中6种代谢物或缺失或存在,提供了足够的二进制信息来编码6142像素的图像。

然后,金属板被烘干,留下微小的代谢物分子点,每个点都保存着数字信息。

然后,这些数据可以用质谱仪读出,质谱仪可以识别存在于板上每个点的代谢物,并对数据进行解码。

研究人员将这张猫的图像保存在小分子溶液中

研究人员通过用质谱仪分析每个点的化学成分,能够以99%的准确率检索到这些数据。他们还用12种代谢物的混合物,解码了一张分辨率更高的猫的照片。

密集数据

他们使用手掌大小的标准板来编码缩略图大小的图像。但是据Rosenstein介绍,代谢物存储设备的物理尺寸可以更小。

代谢物分子比DNA和蛋白质小得多,而且种类繁多。他说,这意味着它们可以比DNA更密集地表示少量数据。

Rosenstein说:“一旦数据被记录下来,它们就不需要任何能量了。根据分子和环境条件的不同,这些数据可以保存数月或数年。”事实上,在极端温度、压力和机械力等条件下,分子存储可能比电子存储更稳定,这取决于分子的特性。

分子存储还可以使离线存储大量数据成为可能,而不是存储在云中,从而防止黑客入侵。

到目前为止,Rosenstein和他的同事们发明的技术与电子计算机相比速度还比较慢。

研究人员指出,这种技术也有一些局限。例如,当多种代谢物分子被放在同一溶液中时,它们之间会发生化学反应,这可能导致错误或数据丢失。但这个bug最终可能成为一个功能。也许可以利用这些反应来操纵执行数据的计算。

Rosenstein表示:

与DNA相比,我们的代谢物数据具有较低的延迟,从而可以从头到尾快速地读写数据集。”他也补充说 DNA 目前在编码大型数据集方面有优势。

这些想法在研究实验室中使用已经可行,但我们需要加快速度,缩小分析硬件的尺寸,然后才能在实验室外实施。

这类研究挑战了人们在分子数据系统中所看到的可能性。DNA不是唯一可以用来存储和处理信息的分子。认识到还有其他潜力巨大的可能性是令人兴奋的。

实验原料和方法

化学库的制备

将36种不同代谢化合物的试剂级样品(S1文件中的表A)在二甲基亚砜(DMSO,无水)中稀释,标称浓度均为25mM。将一些代谢物首先溶解在替代溶剂(去离子水,可选择加入0.5M或1M的盐酸)中,以促进化合物在DMSO中的溶解。将10μL每种化合物等分到384孔的微量培养板(Labcyte384LDV)上。

数据混合物的准备

规格为76mm×120mm不锈钢MALDI板上制备化学数据混合物。使用声学液体处理器(LabcyteEcho 550型)将化合物从培养板转移到MALDI板上。仪器标称的单液滴体积为2.5nL,但为了降低液滴体积变化对结果的影响,通常每种化合物使用2滴(5nL)。液滴以标准的2.25mm点距排布,共计1536个位置(32×48)。

将化合物按编好的位置滴到MALDI板上之后,需要将MALDI基质材料添加到每个位置上。我们选择9-氨基吖啶作为基质材料,因为它与代谢物库能够共存,它在小分子体系中具备低背景(low background)特征,同时支持正离子和负离子模式。将MALDI板放置在干燥环境中,大约在一夜时间即可完成结晶(最多10小时)。干燥后,可将板储存在湿度控制柜中,或进行MALDI-FT-ICR质谱分析。

数据板的质谱分析

实验中使用傅里叶变换离子回旋共振(FT-ICR)质谱仪(SolariX 7T,Bruker)分析结晶代谢物数据混合物。精确的成分结果是每个频谱上的测量时间的函数。这些实验中通常耗时0.5-1秒,产生的分辨精度<0.001Da。该仪器将连续测量48x32网格上的每种混合物的质谱。测定全部样本只需要不到2个小时。

为了从质谱中读取编码数据,将代谢物存在的概率建模为多个预测质量的组合。利用多项逻辑回归方法,考虑偏移量的自然指数,加上所有识别质谱信噪比之和,每个信噪比均与训练的权重系数相乘。在给定每种代谢物的n个最佳峰值输入的情况下,使用有限记忆BFGS算法来预测逻辑精度评分。

在实验中,对所有代谢组合成分重复以上过程。

实验结果:检索准确率高达99%!

编写合成代谢组分

我们的合成代谢组由36种化合物组成,包括维生素、核苷、核苷酸、氨基酸、糖和代谢途径中间体。为了将数据写入代谢物混合物中,我们使用声学液体处理器以2.5nL的增量将纯代谢物溶液传输到钢制MALDI板上预先定义的位置。选择2.25 mm节距网格,以与标准wellplate协议兼容。这产生了一个不同代谢物混合物的空间阵列,其中每种混合物中每个化合物的存在(或不存在)编码一位信息。

在蒸发溶剂后,每个数据板包含多达1536个干燥点(图1b),我们可以使用基质辅助激光解吸电离(MALDI)质谱(MS)进行分析。为了预先筛选合成代谢组中的每种化合物,在1400个独特的点上,用36种代谢物的组合混合物写出图版。由于MALDI方案具有化学特异性,因此我们不希望在一组条件下,整个化合物库具有相同的鉴定准确度。我们使用此预筛选来确定具有相同方案的每种代谢物的MS鉴定准确度。

代谢物混合物的离子回旋加速器质谱

使用傅里叶变换离子回旋共振(FT-ICR)质谱仪(SolariX 7T,Bruker)分析结晶混合物阵列。在FT-ICR MS中,脉冲RF激发离子进入周期轨道,其频率由磁场强度和离子质量决定,这使得质量分辨率比飞行时间(ToF)更精细。仪器。在这些实验中,质量分辨率通常为0.001Da。使用FT-ICR MS,即使它们的质量仅相差milli-Daltons ,也可以区分代谢物。

在图2(a)中,显示了包含鸟苷(go)和9-氨基吖啶(9A)基质的斑点的一个正离子MALDI-FT-ICR质谱。质子化的基质加合物在峰1和6(蓝色)处鉴定,连同鸟苷的加合物,标记为(2:Na,3:K,4:2K-H和5:异丙醇(IPA)+ H)。观察到的强度因加合物和种类而异,在图2(b)中,在1024个点上显示了第一个峰值(m / z = 195.0916±0.001处的质子化基质)的强度。

图2.用质谱分析化学数据板。

许多开放获取工具可用于代谢峰的检测和MS质谱的分配。为了清楚地将质谱与二进制数据联系起来,我们考虑了一个基本的检测方案:如果代谢物的质量强度高于某个特定的阈值,则声明它存在,并且其地址的二进制状态设置为1(或0,如果它的质量峰值不存在)。该方法在图2(b)中的1024个斑点中识别出1020个基质质子化峰(≈99.6%)。

作为初始演示,我们选择了6种代谢物的库子集,用于将Nubian ibex的6,142像素二进制图像编码为1024个混合物的阵列。伪随机交织后,将数据映射到存在或不存在山梨醇(SO)、谷氨酸(GA)、色氨酸(TP)、胞苷(CD)、鸟苷(GO)和2-脱氧鸟苷水合物(GH)中。如方法中所述,使用FT-ICR-MS对板进行书写和分析。

图3a显示了240个独立点观测到的质谱背景噪声的空间图和直方图。在进一步分析之前,我们将每个质谱除以其背景σ,这样可以更直接地比较多个位置的信号强度。信号强度是样品制备、分析物和加合物的复杂函数。归一化后,6种代谢物的目标峰显示在图3b中。第一行是其数据包含六位[1 0 0 0 0 0]的点,因此仅存在与第一代谢物(山梨糖醇)相关的m / z峰。类似地,显示了五个其他“一次触发”模式,可以无错误地解码。

图3.质谱背景和噪声考虑因素。

选择阈值3σ作为说明代谢物存在所需的强度。例如,如果我们检查色氨酸[2Mtp+K]+质量(图3c),我们发现该阈值产生96%的正确分类。如图3d所示,还可以对板上的每个点显示该检测方案。板边缘的误差聚类表明MALDI激光位置和液滴点位置之间的微小偏差是误差的来源。

数据板统计分析

在实践中,一个化合物将与多个峰相关联,并且具有不同的信噪比和用途。对于给定的代谢组,研究人员需要确定哪种m/z峰值最适合识别每个库的元素。

每个高分辨率FT-ICR质谱包含〜2×106 m/z 点。由于质谱空间的大部分是背景,因此首先将特征的数量减少到统计上有用的特征数量。而后研究人员测试了所有质谱的系综平均值(ensemble average)中发现的1444个候选峰,用来确定m/z处的强度对编码数据值的分类精度(图 4a)。

图4

虽然这些峰值的识别没有化学偏差,但许多特征可以归因于已知的代谢物加合物离子。相关加合物质量的直方图如图4b所示。

达到70-100%范围内检测精度的峰数如图4c所示。选择每种代谢物的最佳表现峰值,并应用2.5σ的检测阈值,足以恢复约2%累积读/写错误的数据(图4e)。相应的输入和输出数据图像如图4f和4g所示。

利用逻辑回归对多峰数据进行解码

假设鉴别峰值是部分不相关的(如图D所示),利用每个代谢组的多个m/z峰来寻求改进是合理的。这样的策略将在更复杂的代谢组中变得越来越重要。

图D

研究人员使用类似6kb ibex图像类似的技术,从埃及坟墓中编码了17424位的猫图像(使用了1452个点),其中包含库中12个代谢物子集的数据混合物(图5a)。他们使用这些数据来扩展解码方案,使其包含多个m/z特性。

图5

在确定一组统计鉴别峰之后,研究人员使用1到16个表现最好的峰进行逻辑回归。多质量回归对整个cat图像的读取准确率为97.7%(图5c)。

图4和图5中的数据的累积读取错误率显示为逻辑回归中使用的质量数的函数。

将这些技术应用于早期的ibex数据集,可以实现<0.5%的错误率。但是,重复测量斑点会导致数据丢失。研究人员还发现,每次连续读取数据板都会增加<1%的误差(图E)。

图E

使用不同的板进行训练可以获得相同的精度而不会过度拟合(图F)。

图F

总而言之,上述实验表明:代谢组是一种可行且强大的表示数字信息的媒介。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据存储
    +关注

    关注

    5

    文章

    976

    浏览量

    50927
  • DNA
    DNA
    +关注

    关注

    0

    文章

    243

    浏览量

    31055

原文标题:比DNA存储更可怕!你的照片居然可以存储在氨基酸分子溶液里

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电脑云存储系统,电脑云存储系统的教程,个人云电脑是什么以及怎么连接

    变成了亲情的纽带,跨越千解决家人难题,让老人也能享受科技便利,不再为电脑故障烦恼。接下来和大家一起探索电脑云存储系统的教程。    电脑云存储系统的教程:    以搭建基于OwnCloud的云
    的头像 发表于 12-31 13:57 80次阅读
    电脑云<b class='flag-5'>存储</b>系统,电脑云<b class='flag-5'>存储</b>系统的教程,个人云电脑是什么以及怎么连接

    山东本森智能装备氨基酸液体肥自动放盖压盖灌装机

    自动化
    jf_17886177
    发布于 :2024年12月24日 14:55:24

    分子半导体的特性与创新应用探索

    引言   有机高分子半导体材料,作为一类具有半导体特性的有机高分子化合物,近年来电子器件、光电器件、传感器以及能量转换与存储等领域展现出了巨大的应用潜力。这些材料不仅具有质量轻、柔韧
    的头像 发表于 11-27 09:12 597次阅读
    高<b class='flag-5'>分子</b>半导体的特性与创新应用探索

    不牺牲尺寸的情况下提高脉搏血氧仪溶液的性能

    电子发烧友网站提供《不牺牲尺寸的情况下提高脉搏血氧仪溶液的性能.pdf》资料免费下载
    发表于 09-21 10:54 0次下载
    <b class='flag-5'>在</b>不牺牲尺寸的情况下提高脉搏血氧仪<b class='flag-5'>溶液</b>的性能

    EEPROM存储可以擦除指定区域吗?

    EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)是一种非易失性存储器,其特点是断电后数据依然可以
    的头像 发表于 08-05 17:10 798次阅读

    如何阻止氨水溶液换热器管板腐蚀?新型防腐技术让设备远离腐蚀

    氨水溶液换热器作为一种重要的化工设备,广泛应用于化工、制冷等领域。壳程为循环水、管程介质为氨水溶液的工况下,列管换热器管板腐蚀问题成为影响设备安全运行的关键因素。因此,研究有效的防腐技术对于延长设备寿命、保障生产安全具有重要意
    的头像 发表于 06-21 16:08 480次阅读
    如何阻止氨水<b class='flag-5'>溶液</b>换热器管板腐蚀?新型防腐技术让设备远离腐蚀

    ESP32S2可以GPIO中断进行WIFI的数据发送操作吗?

    使用ESP32S2,SPI做从机, SPI传输时,可以my_post_trans_cb()里面执行spi_slave_transmit()进行数据接收吗? (*目前都是在任务循环执行
    发表于 06-12 07:13

    用于DNA信息存储和新冠病毒检测的生物分子封装新策略

    生物分子的封装和可控释放在生物基信息存储、生物传感、医学鉴定、药物递送等领域具有重要应用价值。
    的头像 发表于 05-27 10:46 664次阅读
    用于DNA信息<b class='flag-5'>存储</b>和新冠病毒检测的生物<b class='flag-5'>分子</b>封装新策略

    洪亮团队在生信期刊JCIM发布最新成果,蛋白质工程迈入通用人工智能时代

    Networks)。在此项研究中,该团队设计了一种微环境感知图神经网络ProtLGN。ProtLGN能够从蛋白质三维结构中学习有益的氨基酸突变位点,建立自然选择下的氨基酸序列分
    的头像 发表于 04-19 17:42 579次阅读
    洪亮团队在生信期刊JCIM发布最新成果,蛋白质工程迈入通用人工智能时代

    基于薄膜铌锂的高性能集成光子学研究

    3月25日,Marko Lončar 博士出席光库科技与 HyperLight 联合主办的“薄膜铌锂光子学技术与应用”论坛,并发表了题为“基于薄膜铌锂的高性能集成光子学”的演讲。
    的头像 发表于 03-27 17:18 923次阅读
    基于薄膜铌<b class='flag-5'>酸</b>锂的高性能集成光子学研究

    锂芯片与精密划片机:科技突破引领半导体制造新潮流

    使用铌锂作为基底材料,可以有效地提高芯片的性能和可靠性。由于铌锂芯片的高效性和可靠性,它在航空航天、工业等领域有着广泛的应用前景。而精密划片机作为制造这种芯片的
    的头像 发表于 02-18 15:39 751次阅读
    铌<b class='flag-5'>酸</b>锂芯片与精密划片机:科技突破引领半导体制造新潮流

    如何估算S7-1500 CPU的装载存储SIMATIC存储卡上的大小?

    S7-1500 CPU 的装载存储 SIMATIC 存储卡上。根据以下操作步骤可以确定用户程序所需要的存储区的大小以便确定所需
    的头像 发表于 01-29 10:00 1021次阅读
    如何估算S7-1500 CPU的装载<b class='flag-5'>存储</b>区<b class='flag-5'>在</b>SIMATIC<b class='flag-5'>存储</b>卡上的大小?

    用于追踪运动代谢的可穿戴多模式生物微流控芯片开发

    通过汗液内源性氨基酸的原位监测可以为健康和代谢提供生理学见解。
    的头像 发表于 01-26 10:19 3982次阅读
    用于追踪运动代谢的可穿戴多模式生物微流控芯片开发

    居然智慧家战略发布,力合微PLC技术为智能家居革新

    1月15日,居然智慧家“人车家”战略发布会暨居然智慧家东直门总店和通州旗舰店开业庆典北京成功举行,居然之家智能家居战略规划正式发布:“计划三年内在全国开出500家
    的头像 发表于 01-17 08:10 428次阅读
    <b class='flag-5'>居然</b>智慧家战略发布,力合微PLC技术为智能家居革新

    分子束外延(MBE)工艺及设备原理介绍

    分子束外延(Molecular beam epitaxy,MBE)是一种超高真空状态下,进行材料外延技术,下图为分子束外延的核心组成,包括受热的衬底和释放到衬底上的多种元素的分子束。
    的头像 发表于 01-15 18:12 5527次阅读
    <b class='flag-5'>分子</b>束外延(MBE)工艺及设备原理介绍